Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2778-2788.doi: 10.19799/j.cnki.2095-4239.2023.0346
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xueling ZHANG(), Qiang YE, Junheng GU, Haoyun XUN, Qi ZHANG(), Chuanxiao CHENG, Tingxiang JIN, Yeqiang ZHANG
Received:
2023-05-22
Revised:
2023-07-12
Online:
2023-09-05
Published:
2023-09-16
Contact:
Qi ZHANG
E-mail:zhangxueling268@163.com;1990922zhangqi@zzuli.edu.cn
CLC Number:
Xueling ZHANG, Qiang YE, Junheng GU, Haoyun XUN, Qi ZHANG, Chuanxiao CHENG, Tingxiang JIN, Yeqiang ZHANG. Preparation and adsorption heat storageperformance study of MgSO4-LiCl@MEG composite heat storage materials[J]. Energy Storage Science and Technology, 2023, 12(9): 2778-2788.
1 | 何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2. |
HE Y L. Important role of thermal energy storage technology in energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2. | |
2 | PADAMURTHY A, NANDANAVANAM J, RAJAGOPALAN P. Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-14. |
3 | NGUYEN M H, ZBAIR M, DUTOURNIÉ P, et al. Thermochemical sorption heat storage: Investigate the heat released from activated carbon beads used as porous host matrix for MgSO4 salt[J]. Journal of Energy Storage, 2023, 59: 106452. |
4 | 张叶龙, 苗琪, 宋鹏飞, 等. 矿物基硫酸镁热化学吸附材料的制备与性能评价[J]. 储能科学与技术, 2023, 12(1): 42-50. |
ZHANG Y L, MIAO Q, SONG P F, et al. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorption materials[J]. Energy Storage Science and Technology, 2023, 12(1): 42-50. | |
5 | ZHANG Y L, MIAO Q, JIA X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915. |
6 | ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249. |
7 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. |
8 | BRANCATO V, GORDEEVA L G, GREKOVA A D, et al. Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140. |
9 | LI W, KLEMEŠ J J, WANG Q W, et al. Characterisation and sorption behaviour of[emailprotected]composite sorbents for thermochemical energy storage with controllable thermal upgradeability[J]. Chemical Engineering Journal, 2021, 421: 129586. |
10 | 孙有改, 赵惠忠, 张峰, 等. 活性氧化铝/(LiCl+CaCl2)复合吸附剂水吸附性能研究[J]. 化学工程, 2022, 50(5): 6-11. |
SUN Y G, ZHAO H Z, ZHANG F, et al. Research on water adsorption performance of activated alumina/(LiCl+CaCl2) composite adsorbent[J]. Chemical Engineering, 2022, 50(5): 6-11. | |
11 | LI W, ZENG M, WANG Q W. Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110509. |
12 | MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. |
13 | FERNÁNDEZ A G, FULLANA M, CALABRESE L, et al. Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems[J]. Renewable Energy, 2020, 150: 428-434. |
14 | CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2 ·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108. |
15 | YAN T, ZHANG H. A critical review of salt hydrates as thermochemical sorption heat storage materials: Thermophysical properties and reaction kinetics[J]. Solar Energy, 2022, 242: 157-183. |
16 | LI W, KLEMEŠ J J, WANG Q W, et al. Energy storage of low potential heat using lithium hydroxide based sorbent for domestic heat supply[J]. Journal of Cleaner Production, 2021, 285: 124907. |
17 | KHARBANDA J S, YADAV S K, SONI V, et al. Modeling of heat transfer and fluid flow in epsom salt (MgSO4 ·7H2O) dissociation for thermochemical energy storage[J]. Journal of Energy Storage, 2020, 31: 101712. |
18 | JABBARI-HICHRI A, BENNICI S, AUROUX A. CaCl2-containing composites as thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 172: 177-185. |
19 | CLARK R J, FARID M. Hydration reaction kinetics of SrCl2 and SrCl2-cement composite material for thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111311. |
20 | WANG L Q, FU X J, CHANG E, et al. Preparation and its adsorptive property of modified expanded graphite nanomaterials[J]. Journal of Chemistry, 2014, 2014: 1-5. |
21 | ZHANG X L, WANG F F, ZHANG Q, et al. Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111246. |
22 | ZHAO Q, LIN J Q, HUANG H T, et al. Enhancement of heat and mass transfer of potassium carbonate-based thermochemical materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104259. |
23 | LI W, KLEMEŠ J J, WANG Q W, et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage[J]. Renewable Energy, 2020, 157: 920-940. |
24 | XIA B Q, ZHAO C Y, YAN J, et al. Development of granular thermochemical heat storage composite based on calcium oxide[J]. Renewable Energy, 2020, 147: 969-978. |
25 | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. |
26 | PALOMBA V, SAPIENZA A, ARISTOV Y. Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage[J]. Applied Energy, 2019, 248: 299-309. |
27 | D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881. |
[1] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[2] | Fa MAO, Xuelai ZHANG, Weisan HUA. Research progress of aluminum potassium sulfate dodecahydrate phase-change material for thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 120-130. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Yaxi LI, Zhenwei TAN, Chuanchang LI. Research on the preparation and application of a phase-change gel for cold storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3845-3854. |
[5] | Zijie XU, Yan WANG. Thermal storage properties of porous inorganic composite phase change material [J]. Energy Storage Science and Technology, 2022, 11(10): 3171-3179. |
[6] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[7] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[8] | Likui WENG, Yelong ZHANG, Lin JIANG, Yixuan JIA, Linghua TAN, Yi JIN, Yulong DING. Research progress on thermochemical adsorption heat storage technology based on hydrate [J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. |
[9] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[10] | WAN Qian, XIAO Haonan, QIAN Jing, HE Zhengbin, YI Songlin. Influence of iron foam on paraffin phase change heat storage process [J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. |
[11] | XU Zhong, HOU Jing, WAN Shuquan, LI Jun, WU Enhui, LIU Qianshu, GAN Xin. Preparation and thermal properties of metal foam/ paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. |
[12] | SANG Lixia, XU Yongwang, LI Feng, ZHANG Yating, MA Wentong, CHEN Xu, WANG Hao. Preparation of form-stable carbonates/magnesium oxide-flake graphite composite thermal storage material and its thermal conductivity [J]. Energy Storage Science and Technology, 2019, 8(5): 886-890. |
[13] | FANG Manting, ZHANG Xuelai, JI Jun, HUA Weisan, LIU Biao, WANG Xuzhe. Progress in hydrated salt based composite phase change materials [J]. Energy Storage Science and Technology, 2019, 8(4): 709-717. |
[14] | CHE Haishan, CHEN Qianqiao, ZHONG Qin, HE Si. Preparation and thermal properties of erythritol-based phase change composite fibers [J]. Energy Storage Science and Technology, 2017, 6(4): 644-654. |
[15] | CHENG Xiaomin1,2, WANG Qingmeng1, LI Yuanyuan1, YU Guoming2. Effect of In on the thermal properties and microstructure of Sn-Bi-Zn alloy#br# [J]. Energy Storage Science and Technology, 2017, 6(4): 662-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||