Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 645-655.doi: 10.19799/j.cnki.2095-4239.2019.0215
SHAO Junkang, LI Xin(), MO Yanqing, QIU Ya, DONG Xueping, ZHU Haoyu
Received:
2019-09-26
Revised:
2019-11-01
Online:
2020-03-05
Published:
2019-11-11
Contact:
Xin LI
E-mail:Lixin@hfut.edu.cn
CLC Number:
SHAO Junkang, LI Xin, MO Yanqing, QIU Ya, DONG Xueping, ZHU Haoyu. Analysis of modeling and flow characteristics of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2020, 9(2): 645-655.
Table 1
5 kW/6 h VRBparameters"
参数名称 | 符号 | 取值 | 单位 | 参数名称 | 符号 | 取值 | 单位 |
---|---|---|---|---|---|---|---|
额定功率 | P s | 5 | kW | V3+扩散系数 | K 3 | 3.222×10-10(25 ℃) | dm2 ·s-1 |
额定电压 | U s | 48 | V | VO2+扩散系数 | K 4 | 6.825×10-10(25 ℃) | dm2 ·s-1 |
额定电流 | I d | 105 | A | VO2 +扩散系数 | K 5 | 5.897×10-10(25 ℃) | dm2 ·s-1 |
额定时间 | T | 6 | h | V2+扩散系数 | K 2 | 8.768×10-10(25 ℃) | dm2 ·s-1 |
额定能量 | E N | 30 | kW·h | 内部电阻 | R a | 0.040 | Ω |
额定容量 | C a | 630 | A·h | 反应电阻 | R b | 0.026 | Ω |
最大电流 | I max | 120 | A | 固定电阻损耗 | R f | 13.94 | Ω |
电堆体积 | V s | 165 | L | 动态响应 | C e | 0.154 | F |
电解液总体积 | V t | 1600 | L | 电解质密度 | ρ | 1354 | g·L-1 |
电池单体个数 | N cell | 39 | 个 | 电解质粘度 | μ | 4.928×10-3 | Pa·s-1 |
全氟离子交换膜厚度 | d | 1.78×10-3 | dm | 循环泵的效率 | α | 80 | % |
单体隔膜面积 | S | 10 | dm2 | 管道长度与横截面积之比 | L/A | 460 | dm-1 |
法拉第常数 | F | 96485 | C·mol-1 | 流阻 | | 14186.843 | Pa·L-1 |
转移的电子数 | Z | 1 | 个 | 平衡电势 | U eq | 1.259 | V |
钒电解液浓度 | C | 1.5 | mol·L-1 |
1 | 李鑫, 莫言青, 邱亚 . VRB仿真模型综述[J]. 机械设计与制造工程, 2017, 46(11): 1-7. |
LI Xin , MO Yanqing , QIU Ya . VRB simulation model review[J]. Mechane Design and Manufacturing Engineering, 2017, 46 (11): 1-7. | |
2 | TANG A , BAO J , SKYLLAS-KAZACOS M . Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(24): 10737-10747. |
3 | TANG A , BAO J , SKYLLAS-KAZACOS M . Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216: 489-501. |
4 | SKYLLAS-KAZACOS M , MENICTAS C . The vanadium redox battery for emergency back-up applications[C]//International Telecommunications Energy Conference, 1997. |
5 | CHAHWAN J , ABBEY C , JOOS G . VRB modelling for the study of output terminal voltages , internal losses and performance[C]//Electrical Power Conference, IEEE, 2007. |
6 | SHAH A A , WATT-SMITHM J , WALSH F C . A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27): 8087-8100. |
7 | 周正, 殷聪, 房红琳 . VRB电化学极化理论研究[J]. 东方电气评论, 2014, 28(2): 1-7. |
ZHOU Zheng , YIN Cong , FANG Honglin . Theoretical study on VRB electrochemical polarization[J]. Dongfang Electric Review, 2014, 28 (2): 1-7. | |
8 | 田野, 刘建国, 彭海泉 . 三维非恒温的钒电池流场模型[J]. 电源技术, 2012, 36(2): 201-203. |
TIAN Ye , LIU Jianguo , PENG Haiquan . Three dimensional non isothermal flow field model of vanadium battery[J]. Chinese Journal of Powe Source, 2012, 36 (2): 201-203. | |
9 | CHAHWAN J A . Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications[D]. Montreal: McGill University, 2007. |
10 | 姚敦平 . 钒电池快速充电方法及钒电池光伏储能系统建模研究[D]. 衡阳: 南华大学, 2012. |
YAO Dunping . Fast charging method of vanadium batteries and modeling of photovoltaic energy storage system of vanadium battery [D]. Hengyang: Nanhua University, 2012. | |
11 | 王湘明, 李庆磊, 郭雨梅 . 基于Matlab/SimulinkVRB的建模研究[J]. 电源技术, 2013, 37(2): 234-237. |
WANG Xiangming , LI Qinglei , GUO Yumei . Modeling research based on MATLAB/Simulink VRB [J]. Chinese Journal of Power Sources, 2013, 37(2): 234-237. | |
12 | 雷加智, 李勋, 朱敬峰 . VRB模型及其充放电控制[J]. 电源技术, 2013, 37(9): 1574-1576. |
LEI Jiazhi , LI Xun , ZHU Jingfeng . VRB model and charge and discharge control [J]. Chinese Journal of Power Sources, 2013, 37 (9): 1574-1576. | |
13 | 沈洁, 李广凯, 侯耀飞 . 钒液流电池建模及充放电效率分析[J]. 电源技术, 2013, 37(6): 1001-1003. |
SHEN Jie , LI Guangkai , HOU Yaofei . Modeling and charging and discharging efficiency analysis of vanadium liquid flow batteries[J]. Chinese Journal of Power Sources, 2013, 37 (6): 1001-1003. | |
14 | 彭亚凯, 刘飞, 李爱魁 . VRB电气模型建模与验证[J]. 水电能源科学, 2012(5): 188-190. |
PENG Yakai , LIU Fei , LI Aikui . VRB electrical model modeling and verification[J]. Hydropower Energy Science, 2012 (5): 188-190. | |
15 | 迟晓妮, 朱敏刚, 吴秋轩 . 基于等效模型的全钒液流电池运行优化控制研究[J]. 储能科学与技术, 2018, 7(3): 530-538. |
CHI Xiaoni , ZHU Mingang , WU Qiuxuan . Operational optimization control of all vanadium liquid flow battery based on equivalent model[J]. Energy Storage Science and Technology, 2018, 7 (3): 530-538. | |
16 | 刘记 . 全钒液流电池双极板流道的优化及流量控制研究[D]. 长春: 吉林大学, 2011. |
LIU Ji . Study on optimization and flow control of bipolar plate runner for all-vanadium liquid flow battery [D]. Changchun: Jilin University, 2011. | |
17 | BLANC C , RUFER A . Multiphysics and energetic modeling of a vanadium redox flow battery[C]// IEEE International Conference on Sustainable Energy Technologies, 2008. |
18 | BLANC C . Multiphysics and energetic modeling of a vanadium redox flow battery electricity storage system[D]. Proc. Int. Conf. on Sustainable Energy Technologies (ICSET), doi: 10.1109/ICSET.2008.4747096, 2008. |
[1] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[2] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[3] | Zhenyu WANG, Zixiao GUO, Xinzhuang FAN, Tianshou ZHAO. Comparative study between serpentine and interdigitated flow fields for vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1121-1130. |
[4] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[5] | WANG Qiushi, SUN Miaomiao, LIU Qinghua, YANG Hong CHEN Jingyun, LIU Junqing, LIANG Wenbin. Surface modification of carbon fiber paper for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 714-719. |
[6] | CHI Xiaoni, ZHU Mingang, WU Qiuxuan. Research on optimal operation control based on the equivalent model of VRFB system [J]. Energy Storage Science and Technology, 2018, 7(3): 530-538. |
[7] | LIU Jinyu,LI Dan, WANG Lihua, HAN Xutong, HUANG Qinglin. SPEEK/ SGO proton exchange membranes with superior proton selectivity for vanadium redox battery [J]. Energy Storage Science and Technology, 2018, 7(1): 66-. |
[8] | LI Xiangrong1,2, QIN Ye1, LIU Jianguo1, YAN Chuanwei1. Prediction of viscosity for concentrated aqueous VOSO4 solutions for vanadium flow batteries [J]. Energy Storage Science and Technology, 2017, 6(4): 776-781. |
[9] | CHEN Jizhong, LAI Xiaokang, HUI Dong, LI Bei, WANG Kunyang, LI Youning. Testing and analyzing power-energy response capability of the vanadium redox flow battery [J]. Energy Storage Science and Technology, 2014, 3(5): 486-489. |
[10] | LIAO Sida, SONG Shiqiang, ZHANG Jianbo, WANG Baoguo. Simulation of the effects of electrode parameters on all-vanadium redox flow battery performance [J]. Energy Storage Science and Technology, 2014, 3(4): 395-405. |
[11] | LI Minghua, FAN Yongsheng, LI Bingyang, WANG Baoguo. Theoretical and technological aspects of flow batteries:Shunt current formation and control [J]. Energy Storage Science and Technology, 2014, 3(2): 164-169. |
[12] | LIU Zonghao, ZHANG Huamin, GAO Sujun, MA Xiangkun, LIU Yufeng. The world's largest all-vanadium redox flow battery energy storage system for a wind farm [J]. Energy Storage Science and Technology, 2014, 3(1): 71-77. |
[13] | LI Dandan, CHU Youqun, LI Wenwen, MA Chunan. Characteristics of graphite based composite electrodes containing carbon nanotubes for vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2013, 2(3): 227-232. |
[14] | NIU Hongjin, TANG Junke, ZHANG Yongming, ZHANG Heng. Review on ion exchange membranes for vanadium redox flow battery applications [J]. Energy Storage Science and Technology, 2013, 2(2): 132-139. |
[15] | YANG Linlin, LIAO Wenjun, SU Qing, WANG Zijian. The research &development status of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2013, 2(2): 140-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||