Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1526-1539.doi: 10.19799/j.cnki.2095-4239.2020.0124
• Energy Storage System and Engineering • Previous Articles Next Articles
Danfeng ZHANG(), Jinhua SUN, Qingsong WANG()
Received:
2020-03-30
Revised:
2020-04-14
Online:
2020-09-05
Published:
2020-09-08
Contact:
Qingsong WANG
E-mail:maplezdf@mail.ustc.edu.cn;pinew@ustc.edu.cn
CLC Number:
Danfeng ZHANG, Jinhua SUN, Qingsong WANG. Effect of module structure on performance of phase change material based Li-ion battery thermal management system[J]. Energy Storage Science and Technology, 2020, 9(5): 1526-1539.
Table 3
Basic electrochemical parameters of battery[22-25]"
参数名称 | 符号及单位 | 正极 | 负极 | 隔膜 |
---|---|---|---|---|
电极活性材料颗粒半径 | Rs /μm | 10.5 | 10.5 | — |
电极活性材料体积分数 | εs | 0.52 | 0.49 | — |
Bruggeman系数 | B | 2.98 | 2.98 | 3.15 |
电解液体积分数 | εl | 0.31 | 0.33 | 0.37 |
反应速率系数 | ki /m·s-1 | 11×10-12 | 11×10-12 | — |
初始锂离子浓度 | cs,0 /mol·m-3 | 2500 | 30876 | — |
固相电导率 | σs /S·m-1 | 100 | 100 | — |
液相电导率 | σl /S·m-1 | — | — | 式(26) |
液相扩散系数 | Dl /m2·s-1 | — | — | 式(27) |
电荷转移系数 | α | 0.5 | 0.5 | — |
锂离子迁移数 | t+ | — | — | 0.36 |
固相扩散系数 | Ds /m2·s-1 | 5e-13 | 式(28) | — |
一维模型长度 | L /μm | 60 | 65 | 25 |
活化能 | Ea /kJ·mol-1 | 30 | 20 | — |
环境温度 | Tref /K | 293.15 | — | — |
1 | WANG Qian, JIANG Bin, LI Bo, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128. |
2 | 钟国彬, 王羽平, 王超, 等. 大容量锂离子电池储能系统的热管理技术现状分析[J]. 储能科学与技术, 2018, 7(2): 203-210. |
ZHONG Guobin, WANG Yuping, WANG Chao, et al. The review of thermal management technology for large-scale lithium-ion battery [3] WANG Qingsong, PING Ping, ZHAO Xuejuan,et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. | |
4 | HUANG Hsuanhan, CHEN Hsunyi, LIAO Kuochi, et al. Thermalelectrochemical coupled simulations for cell-to-cell imbalances in lithium-iron-phosphate based battery packs[J]. Applied Thermal Engineering, 2017, 123: 584-591. |
5 | YAN Jiajia, LI Ke, CHEN Haodong, et al. Experimental study on the application of phase change material in the dynamic cycling of battery pack system[J]. Energy Conversion and Management, 2016, 128: 12-19. |
6 | 凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5): 451-459. |
LING Ziye, FANG Xiaoming, WANG Shuangfeng, et al. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5): 451-459. | |
7 | ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
8 | WANG Zichen, ZHANG Zhuqian, JIA Li, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. |
9 | WU Weixiong, WU Wei, WANG Shuangfeng. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications[J]. Applied Energy, 2019, 236: 10-21. |
10 | SAMIMI Fereshteh, BABAPOOR Aziz, AZIZI Mohammadmehdi, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96: 355-371. |
11 | LING Ziye, WANG Fangxian, FANG Xiaoming, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
12 | 安治国, 陈星, 赵琳. PCM/液冷复合式锂电池组热管理[J]. 储能科学与技术, 2019, 8(5): 915-921. |
AN Zhiguo, CHEN Xing, ZHAO Lin. Numerical investigation on integrated thermal management for lithiumion battery pack with phase change material and liquid cooling[J]. Energy Storage Science and Technology, 2019, 8(5): 915-921. | |
13 |
KONG Depeng, PENG Rongqi, PING Ping, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2019, doi: 10.1016/j.enconman.2019.112280.
doi: 10.1016/j.enconman.2019.112280 |
14 |
CAO Jiahao, LUO Mingyun, FANG Xiaoming, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study[J]. Energy, 2019, doi: 10.1016/j.apenergy.2018.06.143.
doi: 10.1016/j.apenergy.2018.06.143 |
15 | QIN Peng, LIAO Mengran, ZHANG Danfeng, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion and Management, 2019, 195: 1371-1381. |
16 | WANG Tao, TSENG K J, ZHAO Jiyun, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134: 229-238. |
17 |
ZHANG Y, SONG X D, MA C Y, et al. Effects of the structure arrangement and spacing on the thermal characteristics of Li-ion battery pack at various discharge rates[J]. Applied Thermal Engineering, 2020, doi: 10.1016/j.applthermaleng.2019.114610.
doi: 10.1016/j.applthermaleng.2019.114610 |
18 | YANG Naixing, ZHANG Xiongwen, LI Guojun, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied Thermal Engineering, 2015, 80: 55-65. |
19 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): doi: 10.1149/1.2221597. |
20 | YAN Jiajia, WANG Qingsong, LI Ke, et al. Numerical study on the thermal performance of a composite board in battery thermal management system[J]. Applied Thermal Engineering, 2016, 106: 131-140. |
21 | PING Ping, PENG Rongqi, KONG Depeng, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176: 131-146. |
22 | CAI L, WHITE R E. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software[J]. Journal of Power Sources, 2011, 196(14): 5985-5989. |
23 | DONG T P, JIANG F M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 261-272. |
24 | MEI Wenxin, CHEN Haodong, SUN Jinhua, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165. |
25 | PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. |
26 | LING Ziye, CHEN Jiajie, XU Tao, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. |
27 | WU W X, WU W, WANG S F. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions[J]. Energy Conversion and Management, 2017, 153: 22-33. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[3] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[6] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[7] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[8] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[9] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[10] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[11] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[12] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[13] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[14] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[15] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||