Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 393-407.doi: 10.19799/j.cnki.2095-4239.2021.0059
Previous Articles Next Articles
Ronghan QIAO(), Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-02-19
Revised:
2021-02-23
Online:
2021-03-05
Published:
2021-03-05
CLC Number:
Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407.
1 | LIN L, QIN K, ZHANG Q, et al. Li-rich Li2Ni0.8Co0.1Mn0.1O2 for anode-free lithium metal batteries[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202017063. |
2 | CHEN M, ZHANG Z, SAVILOV S, et al. Enhanced structurally stable cathodes by surface and grain boundary tailoring of Ni-rich material with molybdenum trioxide[J]. Journal of Power Sources, 2020, doi: 10.1016/j.jpowsour.2020.229051. |
3 | DU F, SUN P, ZHOU Q, et al. Interlinking primary grains with lithium boron oxide to enhance the stability of LiNi0.8Co0.15Al0.05O2[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c16159. |
4 | JAIN R, YUAN Y, SINGH Y, et al. Alloying of alkali metals with tellurene[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202003248. |
5 | TIAN H-K, JALEM R, GAO B, et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: A density functional theory study via an explicit interface model[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54752-54762. |
6 | XIONG C, LIU F, GAO J, et al. One-spot facile synthesis of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. ACS Omega, 2020, 5(47): 30356-30362. |
7 | DU F, ZHOU Q, CAO H, et al. Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials[J]. Journal of Power Sources, 2020, doi: 10.1016/j.jpowsour.2020.228737. |
8 | MESNIER A, MANTHIRAM A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52826-52835. |
9 | LIU Y, WU H, WANG Y, et al. Impact of shell composition, thickness and heating temperature on the performance of nickel-rich cobalt-free core-shell materials[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd571. |
10 | ZENG K, LI T, QIN X, et al. A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode[J]. Nano Research, 2020, 13(11): 2987-2993. |
11 | BI Y, TAO J, WU Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317. |
12 | KIM D W, ZETTSU N, SHIIBA H, et al. Metastable oxysulfide surface formation on LiNi0.5Mn1.5O4 single crystal particles by carbothermal reaction with sulfur-doped heterocarbon nanoparticles: New insight into their structural and electrochemical characteristics, and their potential applications[J]. Journal of Materials Chemistry A, 2020, 8(42): 22302-22314. |
13 | ARIYOSHI K, TANIMOTO M, YAMADA Y. Impact of particle size of lithium manganese oxide on charge transfer resistance and contact resistance evaluated by electrochemical impedance analysis[J]. Electrochimica Acta, 2020, 364: doi: 10.1016/j.electacta.2020. 137292. |
14 | SHI J, ZU L, GAO H, et al. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management[J]. Advanced Functional Materials, 2020, 30(35): doi: 10.1002/adfm.202002980. |
15 | CAO L, HUANG T, ZHANG Q, et al. Porous Si/Cu anode with high initial coulombic efficiency and volumetric capacity by comprehensive utilization of laser additive manufacturing-chemical dealloying[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami. 0c16887. |
16 | BAI M, YANG L, JIA Q, et al. Encasing prelithiated silicon species in the graphite scaffold: An enabling anode design for the highly reversible, energy-dense cell model[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47490-47502. |
17 | MADDIPATLA R, LOKA C, LEE K S. Electrochemical performance of an ultrathin surface oxide- modulated nano-Si anode confined in a graphite matrix for highly reversible lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54608-54618. |
18 | TANG R, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
19 | BARMANN P, KRUEGER B, CASINO S, et al. Impact of the crystalline Li15Si4 phase on the self-discharge mechanism of silicon negative electrodes in organic electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55903-55912. |
20 | ENTWISTLE J E, BOOTH S G, KEEBLE D S, et al. Insights into the electrochemical reduction products and processes in silica anodes for next-generation lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(43): doi: 10.1002/aenm.202001826. |
21 | DENG Q, WANG M, PENG Z, et al. Ultrafast Li+ diffusion kinetics enhanced by cross-stacked nanosheets loaded with Co3O4@NiO nanoparticles: Constructing superstructure to enhance Li-ion half/full batteries[J]. Journal of Colloid and Interface Science, 2021, 585: 51-60. |
22 | HENG S, CAO Z, WANG Y, et al. In situ transformed solid electrolyte interphase by implanting a 4-vinylbenzoic acid nanolayer on the natural graphite surface[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33408-33420. |
23 | HUANG Z, CHOUDHURY S, GONG H, et al. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium[J]. Journal of the American Chemical Society, 2020, 142(51): 21393-21403. |
24 | ZHOU M, ZHAO J, QIU S, et al. Structural and electrochemical properties of Li1.2Ni0.16Mn0.54Co0.08O2-Al2O3 composite prepared by atomic layer deposition as the cathode material for libs[J]. International Journal of Electrochemical Science, 2020, 15(11): 10759-10771. |
25 | LIN L, SUO L, HU Y S, et al. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003709. |
26 | ALESHIN A, BRAVO S, REDQUEST K, et al. Rapid oxidation and reduction of lithium for improved cycling performance and increased homogeneity[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2654-2661. |
27 | XIA S, ZHANG X, LUO L, et al. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers[J]. Small, 2020, doi: 10.1002/smll.202006002. |
28 | HUANG S, CHEN L, WANG T, et al. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Letters, 2021, 21(1): 791-797. |
29 | REN Q Q, YU F D, ZHANG C M, et al. High-performance ternary metal oxide anodes for lithium storage[J]. Ceramics International, 2020, 46(18): 28914-28921. |
30 | ZHUO R, QUAN W, HUANG X, et al. Well-dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries[J]. Nanotechnology, 2021, 32(14): doi: 10.1088/1361-6528/abd4a1. |
31 | TALLMAN K R, YAN S, QUILTY C D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcaba. |
32 | LIU C, WANG J, KOU W, et al. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2021, 404: doi: 10.1016/j.cej.2020.126517. |
33 | AMORES M, EL-SHINAWI H, MCCLELLAND I, et al. Li1.5La1.5MO6 (M=W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 6392-6392. |
34 | BUI T T, YUN B, DARKO K, et al. Solution processing of lithium-rich amorphous Li-La-Zr-O ion conductor and its application for cycling durability improvement of LiCoO2 cathode as coating layer[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202001767. |
35 | BREDDEMANN U, SICKLINGER J, SCHIPPER F, et al. Fluorination of Ni-rich lithium-ion battery cathode materials by fluorine gas: Chemistry, characterization, and electrochemical performance in full-cells[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000202. |
36 | GAUTAM A, SADOWSKI M, GHIDIU M, et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202003369. |
37 | YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hybrid Li-S pouch cell with a reinforced sulfide glass solid-state electrolyte film separator[J]. International Journal of Applied Glass Science, 2021, 12(1): 124-134. |
38 | SUZUKI K, YAGETA A, IKEDA Y, et al. Precipitation of the lithium superionic conductor Li10GeP2S12 by a liquid-phase process[J]. Chemistry Letters, 2020, 49(11): 1379-1381. |
39 | YAMAMOTO K, TAKAHASHI M, OHARA K, et al. Synthesis of sulfide solid electrolytes through the liquid phase: Optimization of the preparation conditions[J]. ACS Omega, 2020, 5(40): 26287-26294. |
40 | JIANG Z, LIANG T, LIU Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54662-54670. |
41 | GUO Y, GUAN H, PENG W, et al. Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115506. |
42 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202011482. |
43 | SHANG H, PENG G, LIU W, et al. Improving the cyclic stability of LiNi0.5Mn1.5O4 at high cutoff voltage by using pyrene as a novel additive[J]. Energy Technology, 2020, 8(10): doi: 10.1002/ente. 202000671. |
44 | LI S, LI Y, ZHAO D, et al. Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101838. |
45 | SHANG H, JIANG J, ZHANG H, et al. 7-hydroxycoumarin as a novel film-forming additive for LiNi0.5Mn1.5O4 cathode at elevated temperature[J]. Chemelectrochem, 2020, 7(22): 4655-4662. |
46 | HAN S, LIU S, GAO J, et al. Enhancement of operating voltage and temperature range by adding lithium bis(fluorosulfonyl)imide as electrolyte additive[J]. Chemistryselect, 2020, 5(44): 14008-14016. |
47 | HIEU QUANG P, MIROLO M, TARIK M, et al. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells[J]. Energy Storage Materials, 2020, 33: 216-229. |
48 | PHAM H Q, CHUNG G J, HAN J, et al. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite parallel to LiCoO2 pouch cell under -20 ℃[J]. Journal of Chemical Physics, 2020, 152(9): doi: 10.1063/1.5144280. |
49 | WANG X, LU Y, GENG D, et al. Planar fully stretchable lithium-ion batteries based on a lamellar conductive elastomer[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53774-53780. |
50 | ZHAO J, LIANG Y, ZHANG X, et al. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202009192. |
51 | ELIZALDE-SEGOVIA R, IRSHAD A, ZAYAT B, et al. Solid-state lithium-sulfur battery based on composite electrode and bi-layer solid electrolyte operable at room temperature[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc4c0. |
52 | CAI L, WAN H, ZHANG Q, et al. In situ coating of Li7P3S11 electrolyte on CuCo2S4/graphene nanocomposite as a high-performance cathode for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33810-33816. |
53 | MA T, WU S, WANG F, et al. Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56086-56094. |
54 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): 176-176. |
55 | YANG X, GAO X, MUKHERJEE S, et al. Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(37): doi: 10.1002/aenm.202001191. |
56 | KIM K J, RUPP J L M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(12): 4930-4945. |
57 | IHRIG M, FINSTERBUSCH M, TSAI C L, et al. Low temperature sintering of fully inorganic all-solid-state batteries-impact of interfaces on full cell performance[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020.228905. |
58 | DING Z, YANG C, ZOU J, et al. Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202006118. |
59 | JU Z, ZHANG X, KING S T, et al. Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems[J]. Applied Physics Reviews, 2020, 7(4): doi: 10.1016/j.jpowsour.2020.228905. |
60 | JESCHULL F, TRABESINGER S. Fast-charge limitations for graphite anodes with Si as capacity-enhancing additive[J]. Batteries & Supercaps, 2021, 4(1): 131-139. |
61 | LEE J K, YOON J R. Effect of the conductive materials and press ratio of an anode electrode on the electrical properties in a lithium-ion battery using SiOx[J]. Journal of Ceramic Processing Research, 2020, 21(5): 533-538. |
62 | LIU H, CHEN T, XU Z, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54842-54850. |
63 | FAN Y, RAHMAN M M, TAO T, et al. Ultra-fast and high-energy density polysulfide-eight ion batteries[J]. Journal of Power Sources, 2020, 477: doi: 10.1016/j.jpowsour.2020.229018. |
64 | BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(52): doi: 10.1002/adma.202005022. |
65 | XU S, KWOK C Y, ZHOU L, et al. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202004239. |
66 | YANG X X, LI X T, ZHAO C F, et al. Promoted deposition of three-dimensional Li2S on catalytic co phthalocyanine nanorods for stable high-loading lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32752-32763. |
67 | AZACETA E, GARCIA S, LEONET O, et al. Particle atomic layer deposition as an effective way to enhance Li-S battery energy density[J]. Materials Today Energy, 2020, 18: doi: 10.1016/j.mtener.2020.100567. |
68 | GHASHGHAIE S, HO-SUM S, FANG J, et al. Electrophoretically deposited binder-free 3-D carbon/sulfur nanocomposite cathode for high-performance Li-S batteries[J]. Journal of Energy Chemistry, 2020, 48: 92-101. |
69 | YIN F, JIN Q, GAO H, et al. A strategy to achieve high loading and high energy density Li-S batteries[J]. Journal of Energy Chemistry, 2021, 53: 340-346. |
70 | GUO D, LI X, WAHYUDI W, et al. Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries[J]. ACS Nano, 2020, 14(12): 17163-17173. |
71 | AZAMI-GHADKOLAI M, YOUSEFI M, ALLU S, et al. Effect of isotropic and anisotropic porous microstructure on electrochemical performance of Li ion battery cathodes: An experimental and computational study[J]. Journal of Power Sources, 2020, 474: doi: 10.1016/j.jpowsour.2020.228490. |
72 | PARK K Y, PARK J W, SEONG W M, et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228369. |
73 | LIANG C, ZHANG X, XIA S, et al. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19206-w. |
74 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
75 | YOON D H, MARINARO M, AXMANN P, et al. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcf4f. |
76 | PRADO A Y R, RODRIGUES M T F, TRASK S E, et al. Electrochemical dilatometry of Si-bearing electrodes: Dimensional changes and experiment design[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd465. |
77 | SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228661. |
78 | LIAO Z, ZHANG S, ZHAO Y, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. |
79 | ZHANG X, HE J, ZHOU J, et al. Thickness evolution of commercial Li-ion pouch cells with silicon-based composite anodes and NCA cathodes[J]. Science China-Technological Sciences, 2021, 64(1): 83-90. |
80 | BOBNAR J, VIZINTIN A, KAPUN G, et al. A new cell configuration for a more precise electrochemical evaluation of an artificial solid-electrolyte interphase[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000255. |
81 | ROBERTSON D C, FLORES L, DUNLOP A R, et al. Effect of anode porosity and temperature on the performance and lithium plating during fast-charging of lithium-ion cells[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000666. |
82 | WEI C, HONG Y, TIAN Y, et al. Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles[J]. Journal of Synchrotron Radiation, 2020, 27: 713-719. |
83 | LU X, DAEMI S R, BERTEI A, et al. Microstructural evolution of battery electrodes during calendering[J]. Joule, 2020, 4(12): 2746-2768. |
84 | DE LA TORRE-GAMARRA C, SOTOMAYOR M, BUCHELI W, et al. Tape casting manufacturing of thick Li4Ti5O12 ceramic electrodes with high areal capacity for lithium-ion batteries[J]. Journal of the European Ceramic Society, 2021, 41(1): 1025-1032. |
85 | CAI C, NIE Z, ROBINSON J P, et al. Thick sintered electrode lithium-ion battery discharge simulations: Incorporating lithiation-dependent electronic conductivity and lithiation gradient due to charge cycle[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1002/adma.200903650. |
86 | CHENG J, MU L, WANG C, et al. Enhancing surface oxygen retention through theory-guided doping selection in Li1-xNiO2 for nxt-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(44): 23293-23303. |
87 | BAI J, SUN W, ZHAO J, et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides[J]. Chemistry of Materials, 2020, 32(23): 9906-9913. |
88 | QU J, XIAO J, WANG T, et al. High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries[J]. Journal of Physical Chemistry C, 2020, 124(45): 24644-24652. |
89 | NIU S, ZHANG S W, SHI R, et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries[J]. Energy Storage Materials, 2020, 33: 73-81. |
90 | GUO H J, WANG H X, GUO Y J, et al. Dynamic evolution of a cathode interphase layer at the surface of LiNi0.5Co0.2Mn0.3O2 in quasi-solid-state lithium batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20752-20762. |
91 | YANG Z, MORRISSETTE J W, MEISNER Q, et al. Extreme fast-charging of lithium-ion cells: Effect on anode and electrolyte[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000696. |
92 | STETSON C, SCHNABEL M, LI Z, et al. Microscopic observation of solid electrolyte interphase bilayer inversion on silicon oxide[J]. ACS Energy Letters, 2020, 5(12): 3657-3662. |
93 | CHENG D, WYNN T A, WANG X, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. |
94 | WESTOVER A S, SACCI R L, DUDNEY N. Electroanalytical measurement of interphase formation at a Li metal-solid electrolyte interface[J]. ACS Energy Letters, 2020, 5(12): 3860-3867. |
95 | HOOD Z D, CHEN X, SACCI R L, et al. Elucidating interfacial stability between lithium metal anode and Li phosphorus oxynitride via in situ electron microscopy[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c03438. |
96 | RIEGGER L, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/anie.202015238. |
97 | WAN J, SONG Y X, CHEN W P, et al. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution[J]. Journal of the American Chemical Society, 2021, 143(2): 839-848. |
98 | CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chemistry of Materials, 2020, 32(23): 10207-10215. |
99 | OTOYAMA M, SUYAMA M, HOTEHAMA C, et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.0c18314. |
100 | LING H, SHEN L, HUANG Y, et al. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56995-57002. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[9] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[10] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||