Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 863-871.doi: 10.19799/j.cnki.2095-4239.2021.0085
Previous Articles Next Articles
Saisai ZHANG1,2(), Hailei ZHAO1,2()
Received:
2021-03-08
Revised:
2021-04-01
Online:
2021-05-05
Published:
2021-04-30
Contact:
Hailei ZHAO
E-mail:zhang.sai.sai@163.com;hlzhao@ustb.edu.cn
CLC Number:
Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress[J]. Energy Storage Science and Technology, 2021, 10(3): 863-871.
1 | BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3/4): 173-183. |
2 | RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411. |
3 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. |
4 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
5 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
6 | HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201501590. |
7 | JALEM R, MORISHITA Y, OKAJIMA T, et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon[J]. Journal of Materials Chemistry A, 2016, 4(37): 14371-14379. |
8 | CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chemistry of Materials, 2020, 32(23): 10207-10215. |
9 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. |
10 | KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767. |
11 | PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
12 | WAKASUGI J, MUNAKATA H, KANAMURA K. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte[J]. Electrochemistry, 2017, 85(2): 77-81. |
13 | MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets[J]. Chemistry of Materials, 2015, 27(11): 4040-4047. |
14 | KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260: 292-298. |
15 | WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801528. |
16 | WANG C, LI X, ZHAO Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries[J]. Small Methods, 2019, 3(10): doi: 10.1002/smtd.201900261. |
17 | LIU T, REN Y, SHEN Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. Journal of Power Sources, 2016, 324: 349-357. |
18 | LIU T, ZHANG Y B, ZHANG X, et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification[J]. Journal of Materials Chemistry A, 2018, 6(11): 4649-4657. |
19 | ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
20 | SUBRAMANI R, TSENG Y H, LEE Y L, et al. High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(19): 12244-12252. |
21 | HITZ G T, MCOWEN D W, ZHANG L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture[J]. Materials Today, 2019, 22: 50-57. |
22 | CHEN C, LI Q, LI Y Q, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2185-2190. |
23 | LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201606042. |
24 | BI Z, ZHAO N, MA L, et al. Interface engineering on cathode side for solid garnet batteries[J]. Chemical Engineering Journal, 2020, 387: doi: 10.1016/j.cej.2020.124089. |
25 | HE M, CUI Z, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470. |
26 | YI E, SHEN H, HEYWOOD S, et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks[J]. ACS Applied Energy Materials, 2020, 3(1): 170-175. |
27 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
28 | DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28. |
29 | LIN D C, LIU W, LIU Y Y, et al. High ionic conductivity of composite solid polymer electrolyte viain situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. |
30 | CROCE F, PERSI L L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. |
31 | ZHENG J, TANG M, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12538-12542. |
32 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): doi: 10.1149/1.1850854 |
33 | NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012, 47(23): 7978-7985. |
34 | YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206. |
35 | PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm.201701003. |
36 | YU S, SIEGEL D J. Grain boundary softening: A potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158. |
37 | RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
38 | HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
39 | CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91. |
40 | LIU B, ZHANG L, XU S, et al. 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries[J]. Energy Storage Materials, 2018, 14: 376-382. |
41 | WANG J, WANG H, XIE J, et al. Fundamental study on the wetting property of liquid lithium[J]. Energy Storage Materials, 2018, 14: 345-350. |
42 | SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218. |
43 | FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. |
44 | HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
45 | SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie, 2020, 59(29): 11784-11788. |
46 | DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85. |
47 | LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815. |
48 | CHEN S, ZHANG J, NIE L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Advanced Materials, 2021, 33(1): doi: 10.1002/adma.202002325. |
49 | ZHOU D, REN G X, ZHANG N, et al. Garnet electrolytes with ultralow interfacial resistance by SnS2 coating for dendrite-free all-solid-state batteries[J]. ACS Applied Energy Materials, 2021, 4(3): 2873-2880. |
50 | PERVEZ S A, KIM G, VINAYAN B P, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers[J]. Small, 2020, 16(14): doi: 10.1002/smll.202070078. |
51 | DENG T, JI X, ZHAO Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Advanced Materials, 2020, 32(23): doi: 10.1002/adma.202000030. |
52 | SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139. |
53 | HUO H Y, LUO J, THANGADURAI V, et al. Li2CO3: A critical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2020, 5(1): 252-262. |
54 | SHARAFI A, KAZYAK E, DAVIS A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
55 | WANG C, XIE H, PING W, et al. A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte[J]. Energy Storage Materials, 2019, 17: 234-241. |
56 | LI Y T, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. |
57 | HUO H, CHEN Y, ZHAO N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125. |
58 | ALEXANDER G V, PATRA S, SOBHAN S, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors[J]. Journal of Power Sources, 2018, 396: 764-773. |
59 | KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
60 | WANG C, XIE H, ZHANG L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201701963. |
61 | LI S, WANG H, CUTHBERT J, et al. A semiliquid lithium metal anode[J]. Joule, 2019, 3(7): 1637-1646. |
[1] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Yanfang ZHAI, Guanming YANG, Wangshu HOU, Jianyao YAO, Zhaoyin WEN, Shufeng SONG, Ning HU. Solvothermal synthesis of three-dimensional petaloid garnet electrolyte and its application in solid polymer electrolytes [J]. Energy Storage Science and Technology, 2021, 10(3): 905-913. |
[4] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[5] | HUANG Xiao, WU Linbin, HUANG Zhen, LIN Jiu, XU Xiaoxiong. Characterization and testing of key electrical and electrochemical properties of lithium-ion solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(2): 479-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||