Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2156-2168.doi: 10.19799/j.cnki.2095-4239.2021.0115
• New Energy Storage Technologies • Previous Articles Next Articles
Dajin LIU1,2(), Qiang WU1,2, Renjie HE1,2, Chuang YU1, Jia XIE1(), Shijie CHENG1
Received:
2021-03-19
Revised:
2021-04-13
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168.
Fig. 1
(a) Schematic representation of coordinate bonds between alginate chains and calcium cations (region Ⅰ) and strong hydrogen bonding between hydroxylated Si surface and free alginate carboxylic groups (region Ⅱ); (b) Cycling performance of anodes prepared with different binders[37]; (c) Synthesis of Alg-g-PAAm and c-Alg-g-PAAm; (d) Cycling performance of Si/C anode with different binders[38]"
Table 1
Summary of Si anode binders based on biopolymers"
生物高分子黏结剂 | 循环圈数 | 容量保持/(mA·h/g) | 极片中黏结剂含量/% | 参考文献 |
---|---|---|---|---|
CS-g-PANI-0.5 | 200 (1 C) | 1091 | 20 | [ |
ppSA-ppCMC | 150 (0.5 A/g) | 1863 | 10 | [ |
guar gum | 300 (2.1 A/g) | 1561 | 15 | [ |
Alg-Ca-0.15 | 200 (0.42 A/g) | 2837.5 | 15 | [ |
c-Alg-g-PAAm | 100 (1 C) | 836 | 15 | [ |
SA-250 | 150 (1.39 A/g) | 934 | 10 | [ |
CE55 | 1600 (8 A/g) | 1350 | 15 | [ |
CS-CG10%+6%GA | 100 | 2144 | 20 | [ |
AP | 100 (0.1 C) | 1517.9 | 20 | [ |
SSC4SA | 100 (1 A/g) | 2874 | 20 | [ |
starch/PEG | 300 (0.5 A/g) | ~1100 | 20 | [ |
cross-linked corn starch | 200 (0.5 C) | 2106 | 20 | [ |
c-XG-PAM | 1000 (2 A/g) | 1104 | 10 | [ |
PEC/PAA (10) | 100 (0.2 C) | 2386 | 20 | [ |
Fig. 4
(a) Digital photographs of of a Si@CNT/cellulose mixed solution; (b) Synthetic illustration of press/annealing procedure of free-standing Si@CNT/C electrode; (c) Structural illustration of one Si@CNT/C microscroll; (d, e) TEM images of Si@CNT/C; (f) Cyclability of Si@CNT/C electrode (Si-74, 85, and 92) at 0.2 A/g[30]"
Table 2
Summary of Si/C composites prepared using biopolymers as carbon source"
生物高分子制备的硅碳复合材料 | 循环圈数 | 容量保持/(mA·h/g) | 硅含量/% | 参考文献 |
---|---|---|---|---|
Si-85 | 300 (0.2 A/g) | 2056 | 84.5 | [ |
PG/Si/Ni | 2000 (1 A/g) | 604.3 | 37.4 | [ |
Si/HC | 100 (0.2 C) | ~490 | ~15 | [ |
Si@SiO2@C | 200 (0.42 A/g) | 1071 | ~76 | [ |
PSC-30% Si-C | 100 (0.2 A/g) | 850 | 30.0 | [ |
SN-MCB | 500 (0.2 C) | 1440 | 44.0 | [ |
GCSi | 100 (0.2 A/g) | 676 | 25.0 | [ |
rGO/C@Si | 150 (0.42 A/g) | 1115.8 | 72.7 | [ |
Si@CTSC | 300 (1 A/g) | 1324 | 83.2 | [ |
Porous Si/C | 200 (0.5 C) | 782.1 | 65.0 | [ |
Si@C-AL-azo-NO2 | 150 (0.2 A/g) | 882 | 65 | [ |
Si/C composite | 200 (0.2 A/g) | 584.1 | ~30 | [ |
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
4 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
5 | JIANG Z P, JIN L, HAN Z L, et al. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability[J]. Angewandte Chemie International Edition, 2019, 58(33): 11374-11378. |
6 | JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715. |
7 | CHAE S, KO M, KIM K, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1(1): 47-60. |
8 | JIAO X X, YIN J Q, XU X Y, et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(3): 2005699. |
9 | CHEN Z, ZHANG H R, DONG T T, et al. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47164-47180. |
10 | CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5(5): 386-397. |
11 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
12 | XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): 1601481. |
13 | JIN Y, LI S, KUSHIMA A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10(2): 580-592. |
14 | JIA H P, ZOU L F, GAO P Y, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Advanced Energy Materials, 2019, 9(31): 1900784. |
15 | LI Z H, ZHANG Y P, LIU T F, et al. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(20): 1903110. |
16 | LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192. |
17 | FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. |
18 | ZOU K X, GUAN Z X, DENG Y F, et al. Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors[J]. Carbon, 2020, 161: 25-35. |
19 | CHEN M F, JIANG S X, HUANG C, et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(8): 1803-1812. |
20 | CHEN C J, WANG Z G, ZHANG B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
21 | XU D F, CHEN C J, XIE J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): 1501929. |
22 | MA J Q, GAO L F, LI S P, et al. Dual play of chitin-derived N-doped carbon nanosheets enabling high-performance Na-SeS2 half/full cells[J]. Batteries & Supercaps, 2020, 3(2): 165-173. |
23 | LIU D J, JIANG Z P, ZHANG W, et al. Micron-sized SiOx/N-doped carbon composite spheres fabricated with biomass chitosan for high-performance lithium-ion battery anodes[J]. RSC Advances, 2020, 10(63): 38524-38531. |
24 | GAO L F, MA J Q, LI S P, et al. 2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries[J]. Nanoscale, 2019, 11(26): 12626-12636. |
25 | SU A Y, LI J, DONG J J, et al. An amorphous/crystalline incorporated Si/SiOx anode material derived from biomass corn leaves for lithium-ion batteries[J]. Small, 2020, 16(24): 2001714. |
26 | HE Y Y, XU G, WANG C S, et al. Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells[J]. Electrochimica Acta, 2018, 264: 173-182. |
27 | LIU J, KOPOLD P, VAN AKEN P A, et al. Energy storage materials from nature through nanotechnology: A sustainable route from reed plants to a silicon anode for lithium-ion batteries[J]. Angewandte Chemie, 2015, 127(33): 9768-9772. |
28 | DEVIC T, LESTRIEZ B, ROUÉ L. Silicon electrodes for Li-ion batteries. addressing the challenges through coordination chemistry[J]. ACS Energy Letters, 2019, 4(2): 550-557. |
29 | RAJEEV K K, KIM E, NAM J, et al. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries[J]. Electrochimica Acta, 2020, 333: 135532. |
30 | WANG H W, FU J Z, WANG C, et al. A binder-free high silicon content flexible anode for Li-ion batteries[J]. Energy & Environmental Science, 2020, 13(3): 848-858. |
31 | SU W M, WAN R C, LIANG Y, et al. A novel 3D porous pseudographite/Si/Ni composite anode material fabricated by a facile method[J]. Dalton Transactions, 2020, 49(21): 7166-7173. |
32 | GUO R N, ZHANG S L, YING H J, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. ChemSusChem, 2019, 12(21): 4838-4845. |
33 | PREMAN A N, LEE H, YOO J, et al. Progress of 3D network binders in silicon anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 25548-25570. |
34 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79. |
35 | LIU J, ZHANG Q, ZHANG T, et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25(23): 3599-3605. |
36 | HU J Z, WANG Y K, LI D W, et al. Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes[J]. Journal of Power Sources, 2018, 397: 223-230. |
37 | ZHANG L, ZHANG L Y, CHAI L L, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44): 19036-19045. |
38 | GENDENSUREN B, OH E-S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384: 379-386. |
39 | LI Z H, JI J P, WU Q, et al. A new battery process technology inspired by partially carbonized polymer binders[J]. Nano Energy, 2020, 67: 104234. |
40 | CHAI L L, QU Q T, ZHANG L F, et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries[J]. Electrochimica Acta, 2013, 105: 378-383. |
41 | LEE S H, LEE J H, NAM D H, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16449-16457. |
42 | CAO P-F, YANG G, LI B, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. |
43 | LING H Y, WANG C R, SU Z, et al. Amylopectin from glutinous rice as a sustainable binder for high-performance silicon anodes[J]. Energy & Environmental Materials, 2021, 4(2): 263-268. |
44 | JIN B Y, WANG D Y, SONG L N, et al. Biomass-derived fluorinated corn starch emulsion as binder for silicon and silicon oxide based anodes in lithium-ion batteries[J]. Electrochimica Acta, 2021, 365: 137359. |
45 | HAPUARACHCHI S N S, WASALATHILAKE K C, NERKAR J Y, et al. Mechanically robust tapioca starch composite binder with improved ionic conductivity for sustainable lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9857-9865. |
46 | ROHAN R, KUO T C, CHIOU C Y, et al. Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking[J]. Journal of Power Sources, 2018, 396: 459-466. |
47 | ZHANG L, JIAO X X, FENG Z H, et al. A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries[J]. Journal of Power Sources, 2021, 484: 229198. |
48 | WANG J T, WAN C C, HONG J L. Polymer blends of pectin/poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries[J]. ChemElectroChem, 2020, 7(14): 3106-3115. |
49 | LING M, XU Y N, ZHAO H, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries[J]. Nano Energy, 2015, 12: 178-185. |
50 | HUANG L H, LI C C. Effects of interactions between binders and different-sized silicons on dispersion homogeneity of anodes and electrochemistry of lithium-silicon batteries[J]. Journal of Power Sources, 2019, 409: 38-47. |
51 | HWANG G, KIM J M, HONG D, et al. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries[J]. Green Chemistry, 2016, 18(9): 2710-2716. |
52 | SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754. |
53 | SHEN T, YAO Z J, XIA X H, et al. Rationally designed silicon nanostructures as anode material for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 20(1): 15. |
54 | ZHANG H, ZHANG X F, JIN H, et al. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes[J]. Chemical Engineering Journal, 2019, 360: 974-981. |
55 | XU Q, SUN J K, YU Z L, et al. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode[J]. Advanced Materials, 2018, 30(25): e1707430. |
56 | HUANG G, HAN J H, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. |
57 | SONG J J, GUO S W, REN D Z, et al. Rice husk-derived SiOx@carbon nanocomposites as a high-performance bifunctional electrode for rechargeable batteries[J]. Ceramics International, 2020, 46(8B): 11570-11576. |
58 | WANG Y, WANG X L, JIN H, et al. The synergetic effects of a multifunctional citric acid and rice husk derived honeycomb carbon matrix on a silicon anode for high-performance lithium ion batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2583-2592. |
59 | REHMAN W U, WANG H F, MANJ R Z A, et al. When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage[J]. Small, 2021, 17(9): e1904508. |
60 | WANG L, GAO B, PENG C J, et al. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes[J]. Nanoscale, 2015, 7(33): 13840-13847. |
61 | WONG D P, SURIYAPRABHA R, YUVAKUMAR R, et al. Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(33): 13437-13441. |
62 | LIU N A, HUO K F, MCDOWELL M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J]. Scientific Reports, 2013, 3(1): 1919. |
63 | MOHANTY A K, VIVEKANANDHAN S, PIN J M, et al. Composites from renewable and sustainable resources: Challenges and innovations[J]. Science, 2018, 362(6414): 536-542. |
64 | MIYASHIRO D, HAMANO R, UMEMURA K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes[J]. Nanomaterials, 2020, 10(2): 186. |
65 | SHEN D Z, HUANG C F, GAN L H, et al. Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7946-7954. |
66 | WEI R H, XU R H, ZHANG K Y, et al. Biological enzyme treatment of starch-based lithium-ion battery silicon-carbon composite[J]. Nanotechnology, 2020, 32(4): 045605. |
67 | KWON H J, HWANG J Y, SHIN H J, et al. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries[J]. Nano Letters, 2020, 20(1): 625-635. |
68 | PAREKH M H, SEDIAKO A D, NASERI A, et al. In situ mechanistic elucidation of superior Si-C-graphite Li-ion battery anode formation with thermal safety aspects[J]. Advanced Energy Materials, 2020, 10(2): 1902799. |
69 | YU L B, LIU J, HE S S, et al. N-doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium-ion batteries[J]. Applied Surface Science, 2020, 501: 144136. |
70 | LI L, FANG C, WEI W F, et al. Nano-ordered structure regulation in delithiated Si anode triggered by homogeneous and stable Li-ion diffusion at the interface[J]. Nano Energy, 2020, 72: 104651. |
71 | JIN H L, ZHU M S Q, LIU J, et al. Alkaline chitosan solution as etching phase to design Si@SiO2@N-carbon anode for lithium-ion battery[J]. Applied Surface Science, 2021, 541: 148436. |
72 | QIAO M, MEYSAMI S S, FERRERO G A, et al. Low-cost chitosan-derived N-doped carbons boost electrocatalytic activity of multiwall carbon nanotubes[J]. Advanced Functional Materials, 2018, 28(16): 7. |
73 | HAMMI N, CHEN S, DUMEIGNIL F, et al. Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: Synthesis and uses[J]. Materials Today Sustainability, 2020: 100053. |
74 | SHAO R, ZHU F, CAO Z J, et al. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(35): 18338-18347. |
75 | ZHAO T T, ZHU D L, LI W R, et al. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2019, 439: 227027. |
76 | WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresource Technology, 2019, 271: 449-461. |
77 | ZHANG L L, CHEN K L, PENG L C. Comparative research about wheat straw lignin from the black liquor after soda-oxygen and soda-AQ pulping: Structural changes and pyrolysis behavior[J]. Energy & Fuels, 2017, 31(10): 10916-10923. |
78 | FENG Z Q, CHEN H L, LI H Q, et al. Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater[J]. Science of the Total Environment, 2020, 713: 136423. |
79 | XI Y B, HUANG S, YANG D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
80 | NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules, 2017, 103: 1032-1043. |
81 | TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
82 | NIU X Y, ZHOU J Q, QIAN T, et al. Confined silicon nanospheres by biomass lignin for stable lithium ion battery[J]. Nanotechnology, 2017, 28(40): 405401. |
83 | DU L L, WU W, LUO C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics, 2018, 319: 77-82. |
84 | CHEN T, HU J Z, ZHANG L, et al. High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin[J]. Journal of Power Sources, 2017, 362: 236-42. |
85 | CHEN T, ZHANG Q L, PAN J, et al. Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32341-32348. |
86 | LIU W W, LIU J, ZHU M H, et al. Recycling of lignin and Si waste for advanced Si/C battery anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57055-57063. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[10] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[11] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[12] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[13] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[14] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[15] | Zheng CHEN, Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN. SOC estimation of aging lithium-ion battery based on a migration model [J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||