Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 265-274.doi: 10.19799/j.cnki.2095-4239.2021.0343
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Guanqiang RUAN(), Jing HUA, Xing HU, Changqing YU
Received:
2021-07-14
Revised:
2021-08-09
Online:
2022-01-05
Published:
2022-01-10
Contact:
Guanqiang RUAN
E-mail:ruangq5551@163.com
CLC Number:
Guanqiang RUAN, Jing HUA, Xing HU, Changqing YU. Effect of magnetic field on the lithium-ion battery performance[J]. Energy Storage Science and Technology, 2022, 11(1): 265-274.
1 | ANDREWS D J, POLMATEER T L, WHEELER J P, et al. Enterprise risk and resilience of electric-vehicle charging infrastructure and the future mobile power grid[J]. Current Sustainable/Renewable Energy Reports, 2020, 7(1): 9-15. |
2 | DAS S, SATPATHY M P, ROUTARA B C, et al. Microstructural and joint analysis of ultrasonic welded aluminum to cupro-nickel sheets for lithium-ion battery packs[J]. Materials Science Forum, 2020, 978: 463-469. |
3 | 谢建江, 高翔, 夏晨强, 等. 锂电池储能舱运行状态信息采集系统研究[J]. 储能科学与技术, 2021, 10(3): 1109-1116. |
XIE J J , GAO X , XIA C Q , et al. Research on information acquisition system of lithium battery energy storage cabin[J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. | |
4 | 左安昊, 方儒卿, 李哲. 锂离子电池电极结构参数对单体能量与功率的影响[J]. 储能科学与技术, 2021, 10(2): 470-482. |
ZUO A H, FANG R Q, LI Z. Impact of electrode structure parameters on energy and power for lithium-ion cells[J]. Energy Storage Science and Technology, 2021, 10(2): 470-482. | |
5 | LU Z, YU X L, ZHANG L Y, et al. Experimental investigation on the charge-discharge performance of the commercial lithium-ion batteries[J]. Energy Procedia, 2017, 143: 21-26. |
6 | CHENG H M, WANG F M, CHU J P. Effect of Lorentz force on the electrochemical performance of lithium-ion batteries[J]. Electrochemistry Communications, 2017, 76: 63-66. |
7 | SINGH P, KHARE N, CHATURVEDI P K. Li-ion battery ageing model parameter: SEI layer analysis using magnetic field probing[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 35-42. |
8 | DUNCA S, CREANGA D E, AILIESEI O, et al. Microorganisms growth with magnetic fluids[J]. Journal of Magnetism and Magnetic Materials, 2005, 289: 445-447. |
9 | OKUNO K, FUJINAMI R, ANO T, et al. Disappearance of growth advantage in stationary phase (GASP) phenomenon under a high magnetic field[J]. Bioelectrochemistry, 2001, 53(2): 165-169. |
10 | SHEN, K, WANG Z, BI X X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries[J]. Advanced Energy Materials, 2019, 9(20): 1900260.1-1900260.8. |
11 | BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.97. |
12 | ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18. |
13 | BLÄUBAUM L, RÖSE P, SCHMIDT L, et al. The effects of gas saturation of electrolytes on the performance and durability of lithium-ion batteries[J]. ChemSusChem, 2021, 14(14): 2943-2951. |
14 | LI Y K, WEI C, SHENG Y M, et al. Swelling force in lithium-ion power batteries[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12313-12318. |
15 | CHEN J Q, WANG D, WANG Y, et al. An improved 3-D magnetic field generator with larger uniform region[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. |
16 | NISMAYANTI A, JANNAH H, RUGAYYA S, et al. Helmholtz coils model as pulsed electromagnetic field therapy devices for fracture healing using comsol multiphysics[J]. Journal of Physics: Conference Series, 2021, 1763(1): doi: 10.1088/1742-6596/1763/1/012060. |
17 | 陈学文, 谢腾辉, 张家伟, 等. 亥姆霍兹线圈磁场的理论计算与实验讨论[J]. 西南师范大学学报(自然科学版), 2020, 45(3): 40-45. |
CHEN X W, XIE T H, ZHANG J W, et al. On theoretical calculation and experimental discussion of magnetic field due to Helmholtz coil[J]. Journal of Southwest China Normal University (Natural Science Edition), 2020, 45(3): 40-45. | |
18 | LOU T T, ZHANG W G, GUO H Y, et al. The internal resistance characteristics of lithium-ion battery based on HPPC method[J]. Advanced Materials Research, 2012, 455/456: 246-251. |
19 | YUAN ZOU J F, ZHANG X D. Quantifying electric vehicle battery's ohmic resistance increase caused by degradation from on-board data[J]. IFAC-PapersOnLine, 2019, 52(5): 297-302. |
20 | QIU C S, HE G, SHI W K, et al. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge[J]. Journal of Solid State Electrochemistry, 2019, 23(6): 1887-1902. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[3] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[4] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[5] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[6] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[7] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[8] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[11] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[12] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[13] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||