Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2342-2351.doi: 10.19799/j.cnki.2095-4239.2021.0291
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xinyu CAO1(), Fei PENG1(), Liwei LI2, Jianguang YIN3
Received:
2021-06-26
Revised:
2021-07-23
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model[J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351.
1 | BI Y J, TAO J H, WU Y Q, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317. |
2 | 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3293. |
FAN W J, XU G H, YU B N. On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy [J]. Proceedings of the CSEE, 2021, 41(9): 3283-3293. | |
3 | 李超然, 肖飞, 樊亚翔. 基于循环神经网络的锂电池SOC估算方法[J]. 海军工程大学学报, 2019, 31(6): 107-112. |
LI C R, XIAO F, FAN Y X. Approach to lithium battery SOC estimation based on recurrent neural network[J]. Journal of Naval University of Engineering, 2019, 31(6): 107-112. | |
4 | 田冬冬, 李立伟, 杨玉新. 基于改进BP-EKF算法的SOC估算[J]. 电源技术, 2020, 44(9): 1274-1278. |
TIAN D D, LI L W, YANG Y X. Research on estimation based on improved BP-EKF algorithm[J]. Chinese Journal of Power Sources, 2020, 44(9): 1274-1278. | |
5 | HE Z C, YANG Z M, CUI X Y, et al. A method of state-of-charge estimation for EV power lithium-ion battery using a novel adaptive extended Kalman filter[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14618-14630. |
6 | XIONG R, ZHANG Y Z, HE H W, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1526-1538. |
7 | 陈凯, 彭仲晗, 吴启瑞, 等. 基于LIBSVM的铅酸蓄电池荷电状态估计[J]. 电源技术, 2020, 44(4): 578-581. |
CHEN K, PENG Z H, WU Q R, et al. State of charge estimation of lead-acid battery based on LIBSVM[J]. Chinese Journal of Power Sources, 2020, 44(4): 578-581. | |
8 | WANG Q X, WU P Z, LIAN J L. SOC estimation algorithm of power lithium battery based on AFSA-BP neural network[J]. The Journal of Engineering, 2020, 2020(13): 535-539. |
9 | 于仲安, 卢健, 王先敏. 基于GA-BP神经网络的锂离子电池SOC估计[J]. 电源技术, 2020, 44(3): 337-340,421. |
YU Z, LU J, WANG X M. SOC estimation of Li-ion battery based on GA-BP neural network[J]. Chinese Journal of Power Sources, 2020, 44(3): 337-340,421. | |
10 | 周忠凯. 锂离子动力电池多状态估计及退役分选方法研究[D]. 济南:山东大学, 2020. |
ZHOU Z K. Research on multi-state estimation of lithium-ion batteries and sorting method after retirement[D]. Ji'nan: Shandong University, 2020. | |
11 | JIN L, LI S, HU B, et al. A noise-suppressing neural algorithm for solving the time-varying system of linear equations: A control-based approach[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 234-246 |
12 | JIANG X Y, LI S. BAS: beetle antennae search algorithm for optimization problems[EB/OL]. 2017: arXiv: 1710.10724[cs.NE]. https://arxiv.org/abs/1710.10724 |
13 | YANG Aimin, ZHUANSUN Yunxi, SHI Yan, et al. IoT system for pellet proportioning based on BAS intelligent recommendation model[J]. IEEE Transactions on Industrial Informatics,2021,17(2): 934-942. |
14 | GAO S Z, ZHANG Y M, ZHANG Y M, et al. Elman neural network soft-sensor model of PVC polymerization process optimized by chaos beetle antennae search algorithm[J]. IEEE Sensors Journal, 2021, 21(3): 3544-3551. |
15 | XU Y, HUANG Y M, MA G W. A beetle antennae search improved BP neural network model for predicting multi-factor-based gas explosion pressures[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104-117. |
16 | WANG Z Y, YAO L G, CAI Y W, et al. Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis[J]. Renewable Energy, 2020, 155: 1312-1327. |
17 | 田冬冬, 李立伟, 杨玉新, 等. 基于IBA-PF的锂电池SOC估算[J]. 储能科学与技术, 2020, 9(5): 1585-1592. |
TIAN D D, LI L W, Yang Y X, et al. SOC estimation of lithium-ion battery based on IBA-PF[J]. Energy Storage Science and Technology, 2020, 9(5): 1585-1592. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[5] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[6] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[7] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[8] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[9] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[10] | Yi'nan ZHU, Taolin LÜ, Zhiyun ZHAO, Wen YANG. State of charge estimation of lithium ion battery based on parallel Kalman filter [J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. |
[11] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[12] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[13] | Yuanfu ZHU, Wenwu HE, Jianxing LI, Youcai LI, Peiqiang LI. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU [J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176. |
[14] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[15] | Haobin LIANG, Jianhua DU, Xin HAO, Shizhi YANG, Ran TU, Rencheng ZHANG. A review of current research on the formation mechanism of lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 647-657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||