Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 201-210.doi: 10.19799/j.cnki.2095-4239.2021.0369
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Hongzhang ZHU1(), Chuanping WU2, Tiannian ZHOU2, Jie DENG1
Received:
2021-07-26
Revised:
2021-08-16
Online:
2022-01-05
Published:
2022-01-10
Contact:
Hongzhang ZHU
E-mail:895940611@qq.com
CLC Number:
Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210.
1 | 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89. |
SUN Y S, YANG M, SHI C L, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89. | |
2 | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. |
3 | CHEN W, JIANG J C, WEN J F. Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 855-863. |
4 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
5 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J].高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
6 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling[J]. The Journal of Energy Storage, 2020, 28: doi: 10.1016/j.est.2019.101185. |
7 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100811. |
8 | ZHANG J N, ZHANG L, SUN F C, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access, 2018, 6: 23848-23863. |
9 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
10 | JINDAL P, BHATTACHARYA J. Review—Understanding the thermal runaway behavior of Li-ion batteries through experimental techniques[J]. Journal of the Electrochemical Society, 2019, 166(10): A2165-A2193. |
11 | 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. |
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27. | |
12 | FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. |
13 | SAID A O, LEE C, LIU X, et al. Simultaneous measurement of multiple thermal hazards associated with a failure of prismatic lithium ion battery[J]. Proceedings of the Combustion Institute, 2018, 37(3): 4173-4180. |
14 | RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280. |
15 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420. |
16 | PENG Y, ZHOU X D, HU Y, et al. A new exploration of the fire behaviors of large format lithium ion battery[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1243-1254. |
17 | PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89. |
18 | HUANG P F, WANG Q S, LI K, et al. The combustion behavior of large scale lithium titanate battery[J]. Scientific Reports, 2015, 5: doi: 10.1038/srepo7788. |
19 | PENG Y, YANG L, JU X, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: doi: 10.1016/j.jhazmat.2019.120916. |
20 | LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. The Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101714. |
21 | CHEN M Y, OUYANG D X, WENG J W, et al. Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge[J]. Process Safety and Environmental Protection, 2019, 130: 250-256. |
22 | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 A·h lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717. |
23 | WANG Q S, LI K, WANG Y, et al. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): doi: 10.1039/eBRA08908F. |
24 | INCROPERA F P. Fundamentals of Heat and Mass Transfer[M]. Wiley, 2011. |
25 | ZHANG J B, WU B, LI Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259:106-116. |
26 | HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.117906. |
27 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
28 | LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[6] | Yuanxia DONG, Hengyun ZHANG, Jiajun ZHU, Xiaobin XU, Shunliang ZHU. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module [J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616. |
[7] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[8] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[9] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[10] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Jun WANG, Zhuangzhuang JIA, Peng QIN, Zheng HUANG, Jingyun WU, Wen QI, Qingsong WANG. Simulation of thermal runaway gas diffusion in LiFePO4 battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 185-192. |
[13] | Zhihui GUO, Xiaodan CUI, Linshuang ZHAO, Jiawei CHEN. Fire and gas explosion hazards of high-nickel lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 193-200. |
[14] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[15] | Xiuliang CHANG, Lili ZHENG, Shouli WEI, Tao ZHANG, Bing CHEN, Zhuo XU, Zuoqiang DAI. Progress in thermal runaway simulation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||