Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 38-44.doi: 10.19799/j.cnki.2095-4239.2021.0559
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xin WANG1,2(), Pei HU1, Yuanming ZHOU1, Jinxia XU1, Yan JIANG1()
Received:
2021-10-25
Revised:
2021-10-27
Online:
2022-01-05
Published:
2022-01-10
Contact:
Yan JIANG
E-mail:815212957@qq.com;yanjiang@hbut.edu.cn
CLC Number:
Xin WANG, Pei HU, Yuanming ZHOU, Jinxia XU, Yan JIANG. Fast synthesis of Nb2O5 nanosheets derived from Nb2C MXene for lithium ion capacitors[J]. Energy Storage Science and Technology, 2022, 11(1): 38-44.
1 | VOSKANYAN A A, ABRAMCHUK M, NAVROTSKY A. Entropy stabilization of TiO2-Nb2O5 Wadsley-Roth shear phases and their prospects for lithium-ion battery anode materials[J]. Chemistry of Materials, 2020, 32(12): 5301-5308. |
2 | YI T F, SARI H M K, LI X Z, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: doi: 10.1016/j.nanoen.2021.105955. |
3 | 任思佳, 田雷武, 邵钦君, 等. 助熔剂法制备单晶LiNi0.8Co0.1Mn0.1O2正极材料[J]. 储能科学与技术, 2020, 9(6): 1702-1713. |
REN S J, TIAN L W, SHAO Q J, et al. Synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 by flux method[J]. Energy Storage Science and Technology, 2020, 9(6): 1702-1713. | |
4 | LIM E, KIM H, JO C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode[J]. ACS Nano, 2014, 8(9): 8968-8978. |
5 | QIN L, LIU Y, ZHU S H, et al. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20405-20416. |
6 | YAN D, ZHANG J, XIONG D B, et al. Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors[J]. Journal of Materials Chemistry A, 2020, 8(23): 11529-11537. |
7 | MENG J S, HE Q, XU L H, et al. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage[J]. Advanced Energy Materials, 2019, 9(18): doi: 10.1002/aenm.201802695. |
8 | WANG X, YANG Z, MEI F, et al. One pot synthesis of Sb2O3/reduced graphene oxide composite anode material for sodium ion batteries[J]. Materials Letters, 2020, 280: doi: 10.1016/j.matlet.2020.128565. |
9 | SHAO R, NIU J, ZHU F, et al. A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering[J]. Nano Energy, 2019, 63: doi: 10.1016/j.nanoen.2019.06.020. |
10 | SENNU P, MADHAVI S, ARAVINDAN V, et al. Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: A sustained Li-storage via conversion pathway[J]. ACS Nano, 2020, 14(8): 10648-10654. |
11 | DIVYA M L, NATARAJAN S, LEE Y S, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low-and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
12 | BI R Y, XU N, REN H, et al. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors[J]. Angewandte Chemie International Edition, 2020, 59(12): 4865-4868. |
13 | XU Q L, DING R, SHI W, et al. Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(14): 8315-8326. |
14 | DENG B H, LEI T Y, ZHU W H, et al. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors[J]. Advanced Functional Materials, 2018, 28(1): doi: 10.1002/adfm.201704330. |
15 | HAN X Y, RUSSO P A, GOUBARD-BRETESCHÉ N, et al. Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems[J]. Advanced Energy Materials, 2019, 9(42): doi: 10.1002/aenm.201902813. |
16 | CHEONG J Y, KIM C, JUNG J W, et al. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery[J]. Small, 2017, 13(19): doi: 10.1002/smll.201603610. |
17 | FU S D, YU Q, LIU Z H, et al. Yolk-shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors[J]. Journal of Materials Chemistry A, 2019, 7(18): 11234-11240. |
18 | YAN X H, LI T B, XIONG Y G, et al. Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage[J]. Energy Storage Materials, 2021, 36: 213-221. |
19 | LI N, LAN X W, WANG L B, et al. Precisely tunable T-Nb2O5 nanotubes via atomic layer deposition for fast-charging lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16445-16453. |
20 | SHEN S H, ZHANG S Z, CAO X, et al. Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 695-701. |
21 | CHEN J L, WANG H, ZHANG X X, et al. 2D ultrathin nanosheet-assembled Nb2O5 microflowers for lithium ion batteries[J]. Materials Letters, 2018, 227: 112-115. |
22 | SONG Z H, LI H, LIU W, et al. Ultrafast and stable Li-(de)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport[J]. Advanced Materials, 2020, 32(22): doi: 10.1002/adma.202001001. |
23 | QIN L, LIU Y, XU S Y, et al. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors[J]. Small Methods, 2020, 4(12): doi: 10.1002/smtd.202000630. |
24 | NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969. |
25 | CAO J M, SUN Z Q, LI J Z, et al. Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage[J]. ACS Nano, 2021, 15(2): 3423-3433. |
26 | LIAN P C, DONG Y F, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. |
27 | SONG H, FU J J, DING K, et al. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors[J]. Journal of Power Sources, 2016, 328: 599-606. |
28 | OUENDI S, ARICO C, BLANCHARD F, et al. Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices[J]. Energy Storage Materials, 2019, 16: 581-588. |
29 | LIU F F, CHENG X L, XU R, et al. Binding sulfur-doped Nb2O5Hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage[J]. Advanced Functional Materials, 2018, 28(18): doi: 10.1002/adfm.201800394. |
30 | WANG Q, JIA Z Y, LI L G, et al. Coupling niobia nanorods with a multicomponent carbon network for high power lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44196-44203. |
31 | YANG H, XU R, GONG Y, et al. An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage[J]. Nano Energy, 2018, 48: 448-455. |
32 | VICENTINI R, NUNES W, FREITAS B G A, et al. Niobium pentoxide nanoparticles @ multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors[J]. Energy Storage Materials, 2019, 22: 311-322. |
[1] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[2] | XU Lei, LIU Xiaopeng, WANG Yongyu. Early warning analysis for the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, (): 1-8. |
[3] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[6] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[7] | Yun LI, Wang YANG, Yongfeng LI. Synthesis of petroleum asphalt-based MoS2/porous carbon material and its Li-storage performance [J]. Energy Storage Science and Technology, 2022, 11(3): 1026-1034. |
[8] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[9] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[10] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[11] | Chunshui SUN, Decai GUO, Jian CHEN. Preparation and research of carbonized agaric material for sulfur cathodes [J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068. |
[12] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
[13] | Zirui HE, Wei QI, Jintao SONG, Shuangshuang CUI, Hong LI. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas [J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596. |
[14] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[15] | Donghui YANG, Xianzhang WU, Yuping WANG, Hanchuan HUANG, Wen ZHANG, Fangfang TU, Dong CHEN. Review of lithium-ion battery electrochemical simulation technology [J]. Energy Storage Science and Technology, 0, (): 1060-1070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||