Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1350-1357.doi: 10.19799/j.cnki.2095-4239.2021.0606
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jianxin CHEN(), Nan SHENG, Chunyu ZHU(), Zhonghao RAO
Received:
2021-11-16
Revised:
2021-12-04
Online:
2022-05-05
Published:
2022-05-07
Contact:
Chunyu ZHU
E-mail:15505167045@163.com;zcyls@cumt.edu.cn
CLC Number:
Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution[J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357.
1 | 田同振, 李念武, 于乐. 中空碳基材料在电解水中的研究进展[J]. 化工学报, 2020, 71(6): 2466-2480. |
TIAN T Z, LI N W, YU L. Progress of carbon-based micro-/ nanostructured hollow electrocatalysts for water splitting[J]. CIESC Journal, 2020, 71(6): 2466-2480. | |
2 | YIN H J, JIANG L X, LIU P R, et al. Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution[J]. Nano Research, 2018, 11(8): 3959-3971. |
3 | HUNT S T, MILINA M, WANG Z S, et al. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles[J]. Energy & Environmental Science, 2016, 9(10): 3290-3301. |
4 | 张国良. 非贵金属镍基材料用于电解水析氢电极的研究进展[J]. 河南工程学院学报(自然科学版), 2018, 30(2): 57-61. |
ZHANG G L. Research progress of non-noble nickel-based materials for hydrogen evolution reaction[J]. Journal of Henan University of Engineering (Natural Science Edition), 2018, 30(2): 57-61. | |
5 | GAN W T, WU L P, WANG Y X, et al. Carbonized wood decorated with cobalt-nickel binary nanoparticles as a low-cost and efficient electrode for water splitting[J]. Advanced Functional Materials, 2021, 31(29): doi:10.1002/adfm.202010951. |
6 | LI J, LI L, WANG M J, et al. Alloys with Pt-skin or Pt-rich surface for electrocatalysis[J]. Current Opinion in Chemical Engineering, 2018, 20: 60-67. |
7 | PENG Y, CHOI J Y, FÜRSTENHAUPT T, et al. New approach for rapidly determining Pt accessibility of Pt/C fuel cell catalysts[J]. Journal of Materials Chemistry A, 2021, 9(23): 13471-13476. |
8 | WANG J, XU F, JIN H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Advanced Materials, 2017, 29(14): doi:10.1002/adma.201605838. |
9 | RAIKWAR D, MAJUMDAR S, SHEE D. Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts[J]. Molecular Catalysis, 2021, 499: doi:10.1016/j.mcat.2020.111290. |
10 | WANG Y X. Hydrogen production using electrodeposited Ni and Ni/co on carbon paper as cathode catalyst in microbial electrolysis cells[J]. International Journal of Electrochemical Science, 2018: 10848-10858. |
11 | WANG S, HE P, XIE Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta, 2019, 296: 644-652. |
12 | GUO Y H, ZHANG R Q, HAO W J, et al. Multifunctional Co-B-O@COxB catalysts for efficient hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(1): 380-390. |
13 | POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270. |
14 | ZHANG A Q, XIAO Y H, CAO Y, et al. Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper[J]. Journal of Solid State Electrochemistry, 2021, 25(5): 1503-1512. |
15 | CHAURASIA A K, GOYAL H, MONDAL P. Hydrogen gas production with Ni, Ni-Co and Ni-Co-P electrodeposits as potential cathode catalyst by microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18250-18265. |
16 | CHANG C P, ZHU S L, LIU X Y, et al. One-step electrodeposition synthesis of bimetal Fe- and Co-doped NiPi/P for highly efficient overall water splitting[J]. Industrial & Engineering Chemistry Research, 2021, 60(5): 2070-2078. |
17 | DENG Z H, LI L, DING W, et al. Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction[J]. Chemical Communications (Cambridge, England), 2015, 51(10): 1893-1896. |
18 | SONG L J, MENG H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10060-10066. |
19 | CHEN D L, XU Z M, CHEN W, et al. Electrocatalysts: Mulberry-inspired nickel-niobium phosphide on plasma-defect-engineered carbon support for high-performance hydrogen evolution (small 43/2020)[J]. Small, 2020, 16(43): doi:10.1002/smll.202070236. |
20 | LIN C, ZHANG P J, WANG S Y, et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. Journal of Alloys and Compounds, 2020, 823: doi:10.1016/j.jallcom.2020.153784. |
21 | ZHU R J, SHENG N, RAO Z H, et al. Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal[J]. Journal of Materials Chemistry A, 2019, 7(47): 27066-27073. |
22 | ZHU R J, ZHU C Y, SHENG N, et al. A widely applicable strategy to convert fabrics into lithiophilic textile current collector for dendrite-free and high-rate capable lithium metal anode[J]. Chemical Engineering Journal, 2020, 388: doi:10.1016/j.cej.2020.124256. |
23 | FAN X M, FAN Y Y, ZHANG X, et al. Heterogeneous Co@CoO composited P, N Co-doped carbon nanofibers on carbon cloth as pH-tolerant electrocatalyst for efficient oxygen evolution[J]. Journal of Alloys and Compounds, 2021, 877: doi:10.1016/j.jallcom.2021.160279. |
24 | DU Y M, QIN Y Z, ZHANG G B, et al. Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3456-3469. |
25 | GONZÁLEZ-BUCH C, HERRAIZ-CARDONA I, ORTEGA E, et al. Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10157-10169. |
26 | HUANG L T, YANG L, GUO S W, et al. Influence of interlayer water molecules in Ni-based catalysts for oxygen evolution reaction[J]. Journal of Energy Chemistry, 2021, 53: 316-322. |
27 | ZHENG Y, JIAO Y, LI L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(5): 5290-5296. |
28 | YANG J G, YUAN Q, LIU Y, et al. Low-cost ternary Ni-Fe-P catalysts supported on Ni foam for hydrolysis of ammonia borane[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1189-1194. |
29 | MABAYOJE O, DUNNING S G, KAWASHIMA K, et al. Hydrogen evolution by Ni2P catalysts derived from phosphine MOFs[J]. ACS Applied Energy Materials, 2020, 3(1): 176-183. |
30 | 马婉霞. 高效金属磷化物基电催化剂的制备及其分解水性能研究[D]. 镇江: 江苏大学, 2019. |
MA W X. Preparation of high-performance metallic phosphate-based electrocatalysts and their water splitting activities[D]. Zhenjiang: Jiangsu University, 2019. | |
31 | WEI Q, LIU X D, ZHOU Y S, et al. A promising catalyst for hydrodesulfurization: Ni2P-A DFT study[J]. Catalysis Today, 2020, 353: 39-46. |
[1] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[2] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[3] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[4] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[5] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[6] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[7] | Ziyue ZHU, Dongju FU, Jianjun CHEN, Bianrong ZENG. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. |
[8] | CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun. Spinel-type transition metal oxide electrocatalysts for metal-air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 904-923. |
[9] | XU Ke, WANG Baoguo. A review of air electrodes for zinc air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 924-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||