Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1358-1367.doi: 10.19799/j.cnki.2095-4239.2021.0512
• Energy Storage Materials and Devices • Previous Articles Next Articles
Maolin FANG1(), Ying ZHANG2, Lin QIAO1, Shumin LIU1, Zhongqi CAO2, Huamin ZHANG1,3, Xiangkun MA1()
Received:
2021-09-30
Revised:
2021-11-01
Online:
2022-05-05
Published:
2022-05-07
Contact:
Xiangkun MA
E-mail:fangml@dlmu.edu.cn;maxk@dlmu.edu.cn
CLC Number:
Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367.
1 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
2 | TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689. |
3 | 赵平, 张华民, 周汉涛, 等. 我国液流储能电池研究概况[J]. 电池工业, 2005, 10(2): 96-99. |
ZHAO P, ZHANG H M, ZHOU H T, et al. Research outline of redox flow cells for energy storage in China[J]. Chinese Battery Industry, 2005, 10(2): 96-99. | |
4 | THALLER L H. Electrically rechargeable redox flow cell[C]// 9th Intersociety Energy Conversion Engineering Conference, 1974. |
5 | WANG C X, YU B, LIU Y Z, et al. N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426. |
6 | PAN M G, LU Y, LU S Y, et al. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44174-44183. |
7 | WANG C X, LI X, YU B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417. |
8 | YAN W, WANG C, TIAN J, et al. All-polymer particulate slurry batteries[J]. Nature Communications, 2019, 10: 2513. |
9 | LEUNG P, LI X H, PONCE DE LEÓN C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125. |
10 | CODINA G, ALDAZ A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22(7): 668-674. |
11 | XIA L, LONG T, LI W Y, et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis[J]. Small, 2020, 16(38): 2003321. |
12 | ZENG Y K, ZHAO T S, AN L, et al. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage[J]. Journal of Power Sources, 2015, 300: 438-443. |
13 | 衣宝廉, 梁炳春, 张恩浚, 等. 铁铬氧化还原液流电池系统[J]. 化工学报, 1992, 43(3): 330-336. |
YI B L, LIANG B C, ZHANG E J, et al. Iron/chromium redox flow cell system[J]. Journal of Chemical Industry and Engineering (China), 1992, 43(3): 330-336. | |
14 | 杨林, 王含, 李晓蒙, 等. 铁-铬液流电池250 kW/1.5 MW·h示范电站建设案例分析[J]. 储能科学与技术, 2020, 9(3): 751-756. |
YANG L, WANG H, LI X M, et al. Introduction and engineering case analysis of 250 kW/1.5 MW·h ironchromium redox flow batteries energy storage demonstration power station[J]. Energy Storage Science and Technology, 2020, 9(3): 751-756. | |
15 | 肖涵谛, 黄忍, 张欢, 等. Fe(Ⅱ)-Cr(Ⅲ)电解液在石墨电极上的氧化还原动力学研究[J]. 电源技术, 2019, 43(7): 1179-1181, 1196. |
XIAO H D, HUANG R, ZHANG H, et al. Redox kinetics of Fe(Ⅱ)-Cr(Ⅲ) hybrid electrolyte on graphite electrode[J]. Chinese Journal of Power Sources, 2019, 43(7): 1179-1181, 1196. | |
16 | 张路, 张文保. 某些有机胺和氯化铵添加剂对提高Cr3+/Cr2+电对贮存性能的研究[J]. 电源技术, 1991(2): 26-28, 31. |
17 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
18 | GAHN R F, HAGEDORN N, LING J S. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature[R]. NASA Technical Memorandum, 1983. |
19 | HAGEDORN. NASA redox storage system development project. final report[R]. 1984. |
20 | WANG S L, XU Z Y, WU X L, et al. Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery[J]. Applied Energy, 2020, 271: 115252. |
21 | WANG S L, XU Z Y, WU X L, et al. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery[J]. Electrochimica Acta, 2021, 368: 137524. |
22 | RUAN W Q, MAO J T, YANG S D, et al. Designing Cr complexes for a neutral Fe-Cr redox flow battery[J]. Chemical Communications (Cambridge, England), 2020, 56(21): 3171-3174. |
23 | ROBB B H, FARRELL J M, MARSHAK M P. Chelated chromium electrolyte enabling high-voltage aqueous flow batteries[J]. Joule, 2019, 3(10): 2503-2512. |
24 | ZHANG H, TAN Y, LI J Y, et al. Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance[J]. Electrochimica Acta, 2017, 248: 603-613. |
25 | ZHANG H, CHEN N, SUN C Y, et al. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery[J]. International Journal of Energy Research, 2020, 44(5): 3839-3853. |
26 | CHEN N, ZHANG H, LUO X D, et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery[J]. Electrochimica Acta, 2020, 336: 135646. |
27 | TIRUKKOVALLURI S R, GORTHI R K H. Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell[J]. Journal of New Materials for Electrochemical Systems, 2013, 16(4): 287-292. |
28 | WU C D, SCHERSON D A, CALVO E J, et al. A bismuth-based electrocatalyst for the chromous-chromic couple in acid electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(10): 2109-2112. |
29 | AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: 127855. |
30 | SUN C Y, ZHANG H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery[J]. International Journal of Energy Research, 2019, 43(14): 8739-8752. |
31 | SUN C Y, ZHANG H, LUO X D, et al. A comparative study of Nafion and sulfonated poly (ether ether ketone) membrane performance for iron-chromium redox flow battery[J]. Ionics, 2019, 25(9): 4219-4229. |
32 | LIU Q H, GRIM G M, PAPANDREW A B, et al. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection[J]. Journal of the Electrochemical Society, 2012, 159(8): A1246-A1252. |
33 | ZENG Y K, ZHOU X L, AN L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744. |
34 | ZENG Y K, ZHOU X L, ZENG L, et al. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields[J]. Journal of Power Sources, 2016, 327: 258-264. |
35 | ZENG Y K, ZHAO T S, ZHOU X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. Journal of Power Sources, 2017, 352: 77-82. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[4] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[5] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[6] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[7] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[8] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[9] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[10] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[11] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[14] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[15] | Yuyu TIAN, Jing LIU, Xuefeng SONG, Yu QIU, Liping ZHAO, Peng ZHANG, Yanting SUN, Lian GAO. PPy-MoS2 porous network flexible electrodes: Kinetic analysis of electrochemical behavior [J]. Energy Storage Science and Technology, 2022, 11(4): 1141-1148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||