Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2114-2125.doi: 10.19799/j.cnki.2095-4239.2021.0688
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuzuo WANG1,2(), Yinli LU2, Miao DENG3, Bin YANG4, Xuewen YU2, Ge JIN2, Dianbo RUAN5,6()
Received:
2021-12-20
Revised:
2021-12-29
Online:
2022-07-05
Published:
2022-06-29
Contact:
Dianbo RUAN
E-mail:396755221@qq.com;ruandianbo@nbu.edu.cn
CLC Number:
Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors[J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125.
Table 1
Comparison of different self-discharge mechanisms"
类型 | 电荷再分布 | 活化控制 | 扩散控制 | 电势驱动 | ||||
---|---|---|---|---|---|---|---|---|
线性关系 | V~ln(t) | V~ln(t) | V~t1/2 | ln(V)~t | ||||
特征曲线 | ||||||||
驱动力 | 电场 | 电场(过电势) | 浓度梯度 | 电场 | ||||
起源 | 非均态充电 | 电化学反应 | 电化学反应 | 欧姆泄漏 | ||||
影响因素 | 充电协议 | 充电电压、充电电流、充电历史、工作温度 | 充电协议 | 充电电压、工作温度 | 充电协议 | 充电电压、工作温度 | 充电协议 | 充电电压、工作温度 |
材料 | 电极材料(孔结构)、电解液(离子电导率) | 材料 | 电极(活性位点)、电解液(分解电势) | 材料 | 电极(孔结构、官能团)、电芯(厚度) | 材料 | 电极(官能团)、电芯(结构缺陷) | |
杂质 | / | 杂质 | 有机电解液中的痕量水 | 杂质 | 金属离子、H2O2、O2 | 杂质 | / |
1 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
2 | YANG Z G, LIU J, BASKARAN S, et al. Enabling renewable energy—and the future grid—with advanced electricity storage[J]. JOM, 2010, 62(9): 14-23. |
3 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. |
4 | SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163. |
5 | NOORI A, EL-KADY M F, RAHMANIFAR M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48(5): 1272-1341. |
6 | IKE I S, SIGALAS I, IYUKE S. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 661-680. |
7 | LIU K L, YU C, GUO W, et al. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109. |
8 | SMITH P H, TRAN T N, JIANG T L, et al. Lithium-ion capacitors: Electrochemical performance and thermal behavior[J]. Journal of Power Sources, 2013, 243: 982-992. |
9 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
10 | RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473. |
11 | SUN X Z, AN Y B, GENG L B, et al. Leakage Current and self-discharge in lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113386. |
12 | ZAKHIDOV A A, SUH D S, KUZNETSOV A A, et al. Electrochemically tuned properties for electrolyte-free carbon nanotube sheets[J]. Advanced Functional Materials, 2009, 19(14): 2266-2272. |
13 | CONWAY B E, PELL W G, LIU T C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries[J]. Journal of Power Sources, 1997, 65(1/2): 53-59. |
14 | DE LEVIE R. On porous electrodes in electrolyte solutions[J]. Electrochimica Acta, 1963, 8(10): 751-780. |
15 | MADABATTULA G, KUMAR S. Insights into charge-redistribution in double layer capacitors[J]. Journal of the Electrochemical Society, 2018, 165(3): A636-A649. |
16 | HAO C L, WANG X F, YIN Y J, et al. Analysis of charge redistribution during self-discharge of double-layer supercapacitors[J]. Journal of Electronic Materials, 2016, 45(4): 2160-2171. |
17 | GRAYDON J W, PANJEHSHAHI M, KIRK D W. Charge redistribution and ionic mobility in the micropores of supercapacitors[J]. Journal of Power Sources, 2014, 245: 822-829. |
18 | KAUS M, KOWAL J, SAUER D U. Modelling the effects of charge redistribution during self-discharge of supercapacitors[J]. Electrochimica Acta, 2010, 55(25): 7516-7523. |
19 | 陈雪龙, 张希, 许传华, 等. 大容量动力型超级电容器存储性能[J]. 储能科学与技术, 2021, 10(1): 198-201. |
CHEN X L, ZHANG X, XU C H, et al. Storage performance of large-capacitance power supercapacitor[J]. Energy Storage Science and Technology, 2021, 10(1): 198-201. | |
20 | MADABATTULA G, KUMAR S. Model and measurement based insights into double layer capacitors: Voltage-dependent capacitance and low ionic conductivity in pores[J]. Journal of the Electrochemical Society, 2020, 167(8): 080535. |
21 | BLACK J M, ANDREAS H A. Pore shape affects spontaneous charge redistribution in small pores[J]. The Journal of Physical Chemistry C, 2010, 114(27): 12030-12038. |
22 | BU Y F, SUN T, CAI Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29(24): 1700470. |
23 | 贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014, 3(4): 322-338. |
JIA Z J, WANG J, WANG Y. Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Science and Technology, 2014, 3(4): 322-338. | |
24 | ANDREAS H A. Self-discharge in electrochemical capacitors: A perspective article[J]. Journal of the Electrochemical Society, 2015, 162(5): A5047-A5053. |
25 | OICKLE A M, TOM J, ANDREAS H A. Carbon oxidation and its influence on self-discharge in aqueous electrochemical capacitors[J]. Carbon, 2016, 110: 232-242. |
26 | KIERZEK K, FRACKOWIAK E, LOTA G, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimica Acta, 2004, 49(4): 515-523. |
27 | LIU T C, PELL W G, CONWAY B E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes[J]. Electrochimica Acta, 1997, 42(23/24): 3541-3552. |
28 | YANG H Z, ZHANG Y. Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications[J]. Journal of Power Sources, 2011, 196(20): 8866-8873. |
29 | RICKETTS B W, TON-THAT C. Self-discharge of carbon-based supercapacitors with organic electrolytes[J]. Journal of Power Sources, 2000, 89(1): 64-69. |
30 | HESS L H, WITTSCHER L, BALDUCCI A. The impact of carbonate solvents on the self-discharge, thermal stability and performance retention of high voltage electrochemical double layer capacitors[J]. Physical Chemistry Chemical Physics, 2019, 21(18): 9089-9097. |
31 | KAZARYAN S A, LITVINENKO S V, KHARISOV G G. Self-discharge of heterogeneous electrochemical supercapacitor of PbO2∣H2SO4∣C related to manganese and titanium ions[J]. Journal of the Electrochemical Society, 2008, 155(6): A464. |
32 | OICKLE A M, ANDREAS H A. Examination of water electrolysis and oxygen reduction as self-discharge mechanisms for carbon-based, aqueous electrolyte electrochemical capacitors[J]. The Journal of Physical Chemistry C, 2011, 115(10): 4283-4288. |
33 | ZHANG W, YANG W, ZHOU H H, et al. Self-discharge of supercapacitors based on carbon nanotubes with different diameters[J]. Electrochimica Acta, 2020, 357: 136855. |
34 | ZHANG Q, RONG J P, MA D S, et al. The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes[J]. Energy & Environmental Science, 2011, 4(6): 2152. |
35 | ZHANG Q, RONG J P, WEI B Q. A divided potential driving self-discharge process for single-walled carbon nanotube based supercapacitors[J]. RSC Advances, 2011, 1(6): 989. |
36 | LAHEÄÄR A, ARENILLAS A, BÉGUIN F. Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors[J]. Journal of Power Sources, 2018, 396: 220-229. |
37 | JAMIESON L, ROY T, WANG H Z. Postulation of optimal charging protocols for minimal charge redistribution in supercapacitors based on the modelling of solid phase charge density[J]. Journal of Energy Storage, 2021, 33: 102075. |
38 | ZHANG Q, CAI C, QIN J W, et al. Tunable self-discharge process of carbon nanotube based supercapacitors[J]. Nano Energy, 2014, 4: 14-22. |
39 | WANG J, DING B, HAO X D, et al. A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate[J]. Carbon, 2016, 102: 255-261. |
40 | YUAN S T, HUANG X H, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
41 | HE Y T, ZHANG Y H, LI X F, et al. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors[J]. Electrochimica Acta, 2018, 282: 618-625. |
42 | DAVIS M A, ANDREAS H A. Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes[J]. Carbon, 2018, 139: 299-308. |
43 | MISHRA R K, CHOI G J, SOHN Y, et al. Nitrogen-doped reduced graphene oxide as excellent electrode materials for high performance energy storage device applications[J]. Materials Letters, 2019, 245: 192-195. |
44 | LIU D, FU C P, ZHANG N S, et al. Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte[J]. Journal of Solid State Electrochemistry, 2017, 21(3): 759-766. |
45 | MISHRA R K, CHOI G J, SOHN Y, et al. A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests[J]. Chemical Communications (Cambridge, England), 2020, 56(19): 2893-2896. |
46 | TEVI T, YAGHOUBI H, WANG J, et al. Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors[J]. Journal of Power Sources, 2013, 241: 589-596. |
47 | WANG Y Z, SHAN X Y, WANG D W, et al. Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency[J]. Journal of Energy Chemistry, 2019, 38: 214-218. |
48 | GANDLA D, SONG G H, WU C R, et al. Atomic layer deposition (ALD) of alumina over activated carbon electrodes enabling a stable 4 V supercapacitor operation[J]. ChemistryOpen, 2021, 10(4): 402-407. |
49 | CHUNG J, PARK H, JUNG C. Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors[J]. Electrochimica Acta, 2021, 369: 137698. |
50 | GE K K, LIU G M. Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte[J]. Chemical Communications (Cambridge, England), 2019, 55(50): 7167-7170. |
51 | WANG Z X, CHU X, XU Z, et al. Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer[J]. Journal of Materials Chemistry A, 2019, 7(14): 8633-8640. |
52 | WANG H Y, ZHOU Q Q, YAO B W, et al. Suppressing the self-discharge of supercapacitors by modifying separators with an ionic polyelectrolyte[J]. Advanced Materials Interfaces, 2018, 5(10): 1701547. |
53 | ZHAO C Y, SUN X D, LI W S, et al. Reduced self-discharge of supercapacitors using piezoelectric separators[J]. ACS Applied Energy Materials, 2021, 4(8): 8070-8075. |
54 | WANG K P, YAO L L, JAHON M, et al. Ion-exchange separators suppressing self-discharge in polymeric supercapacitors[J]. ACS Energy Letters, 2020, 5(10): 3276-3284. |
55 | SUN X Z, ZHANG X, ZHANG H T, et al. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(7): 2035-2042. |
56 | AVIREDDY H, BYLES B W, PINTO D, et al. Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge[J]. Nano Energy, 2019, 64: 103961. |
57 | HAQUE M, LI Q, SMITH A D, et al. Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive[J]. Journal of Power Sources, 2020, 453: 227897. |
58 | LIU M Y, XIA M Y, QI R J, et al. Lyotropic liquid crystal as an electrolyte additive for suppressing self-discharge of supercapacitors[J]. ChemElectroChem, 2019, 6(9): 2531-2535. |
59 | XIA M Y, NIE J H, ZHANG Z L, et al. Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals[J]. Nano Energy, 2018, 47: 43-50. |
60 | HUANG Z D, WANG T R, SONG H, et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors[J]. Angewandte Chemie International Edition, 2021, 60(2): 1011-1021. |
[1] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[2] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[3] | ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction [J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933. |
[4] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[5] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[6] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[7] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[8] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[9] | Yuhe YUAN, liang LIU, Hongtao ZHANG, Qizheng YI, Yongpeng ZHANG, Yanzhe GUO, Wenchang YUAN, Xichao LI. Study on self-discharge detection method of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2022, 11(2): 690-696. |
[10] | Xiubo ZHANG, Chang YU, Jinhe YU, Yingbin LIU, Yuanyang XIE, Jianjian WANG, Shuqin LAN, Jieshan QIU. Recent progress of polymer electrolytes for supercapacitors under extreme environments [J]. Energy Storage Science and Technology, 2022, 11(12): 3808-3818. |
[11] | Li WEI, Xuelin HUANG, Wanting ZHANG, Xintong BAI. A temperature monitoring method of supercapacitor module based on a small number of temperature sensors [J]. Energy Storage Science and Technology, 2022, 11(11): 3631-3640. |
[12] | Qiao DENG, Dongyuan QIU, Wenchao GU, Yanfeng CHEN, Bo ZHANG. Parameter-identification method for fractional-order models of supercapacitors based on frequency-band division [J]. Energy Storage Science and Technology, 2022, 11(10): 3371-3380. |
[13] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[14] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[15] | Chunshui SUN, Decai GUO, Jian CHEN. Preparation and research of carbonized agaric material for sulfur cathodes [J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||