Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2103-2113.doi: 10.19799/j.cnki.2095-4239.2022.0120
• Energy Storage Materials and Devices • Previous Articles Next Articles
Sida HUO(), Wendong XUE(), Xinli LI, Yong LI
Received:
2022-03-07
Revised:
2022-03-22
Online:
2022-07-05
Published:
2022-06-29
Contact:
Wendong XUE
E-mail:g20208393@xs.ustb.edu.cn;xuewendong@ustb.edu.cn
CLC Number:
Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113.
Table 1
Top 10 research institutions by number of publications in the fourth stage"
研究机构 | 发文数量 | 中介中心性 |
---|---|---|
Chinese Acad Sci | 176 | 0.40 |
Univ Malaya | 154 | 0.20 |
Univ Chinese Acad Sci | 103 | 0.02 |
Forschungszentrum Julich | 76 | 0.10 |
Univ Sulaimani | 73 | 0.01 |
Tsinghua Univ | 68 | 0.10 |
Univ Toronto | 63 | 0.06 |
Huazhong Univ Sci & Technol | 61 | 0.05 |
Seoul Natl Univ | 57 | 0.08 |
Table 2
Statistics of highly cited authors"
被引作者 | 被引频次 | 中介中心性 | 主要贡献与研究 | 近五年研究动态 |
---|---|---|---|---|
Armand M | 1534 | 0.04 | “摇椅式”电池 | 全固态电池、单离子导体、新型导电材料[ |
Croce F | 1391 | 0.05 | 纳米填料复合电解质[ | 无机纳米颗粒对电极和电解质的调控[ |
Scrosati B | 971 | 0.01 | 复合电解质纳米结构设计、锂-空气电池的开发 | 聚合物电解质、纤维电极、界面 |
Appetecchi G B | 876 | 0.03 | 复合电解质传导机理与界面问题[ | 离子液体电解质、全固态电解质 |
Tarascon J M | 867 | 0.03 | 纳米结构电解质、电极 | 固态电解质 |
Stephan A M | 825 | 0.02 | 复合电解质[ | 复合电解质[ |
Watanabe M | 821 | 0.03 | 离子液体电解质的应用、复合电解质界面接触[ | 固态电解质、第一性原理计算 |
Bruce P G | 792 | 0.03 | 复合电解质有机相改性[ | 全固态电池、检测技术 |
1 | 刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473. |
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473. | |
2 | ZHAI H W, XU P Y, NING M Q, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. |
3 | 许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
XU Z, ZHENG L L, CHEN B, et al. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. | |
4 | TALEB O, BARZYCKI D C, POLANCO C G, et al. Assessing effective medium theories for conduction through lamellar composites[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122631. |
5 | BLATT M P, HALLINAN D T. Polymer blend electrolytes for batteries and beyond[J]. Industrial & Engineering Chemistry Research, 2021, 60(48): 17303-17327. |
6 | GAO H C, GUO B K, SONG J, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235. |
7 | WIECZOREK W, FLORJANCZYK Z, STEVENS J R. Composite polyether based solid electrolytes[J]. Electrochimica Acta, 1995, 40(13/14): 2251-2258. |
8 | HALLINAN D T, BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research, 2013, 43: 503-525. |
9 | CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. |
10 | CHEN C M. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences, 2004, 101(s1): 5303-5310. |
11 | 陈丽萍, 冯金奎, 田园, 等. 基于文献计量学的锂二次电池研究知识图谱分析[J]. 储能科学与技术, 2021, 10(3): 1196-1205. |
CHEN L P, FENG J K, TIAN Y, et al. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics[J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. | |
12 | CHEN C M, SONG M. Visualizing a field of research: A methodology of systematic scientometric reviews[J]. PLoS One, 2019, 14(10): e0223994. |
13 | 胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. |
HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. | |
14 | 赵晏强, 李印结, 吴跃伟, 等. 基于文献计量和关键词的锂离子电池正极材料的研究进展[J]. 材料导报, 2014, 28(3): 140-145. |
ZHAO Y Q, LI Y J, WU Y W, et al. Research progress of cathode materials for lithium-ion battery based on literature metrology and keywords[J]. Materials Review, 2014, 28(3): 140-145. | |
15 | SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) X[J]. Journal of the Chemical Society, Chemical Communications, 1977(16): 578. |
16 | WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602. |
17 | WRIGHT P V. Polymer electrolytes—the early days[J]. Electrochimica Acta, 1998, 43(10/11): 1137-1143. |
18 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
19 | YAMAMOTO O. Solid oxide fuel cells: Fundamental aspects and prospects[J]. Electrochimica Acta, 2000, 45(15/16): 2423-2435. |
20 | YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019. |
21 | LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
22 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
23 | WANG X E, ZHU H J, GREENE G W, et al. Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning[J]. Journal of Materials Chemistry A, 2016, 4(25): 9873-9880. |
24 | ZHOU Y D, WANG X E, ZHU H J, et al. Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries[J]. Energy Storage Materials, 2018, 15: 407-414. |
25 | CROCE F, PERSI L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. |
26 | CROCE F, D' EPIFANIO A, HASSOUN J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47. |
27 | ZHOU Y D, WANG X E, ZHU H J, et al. N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: Characterization and lithium cell studies[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 2225-2234. |
28 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. |
29 | ZHONG Y, XIA X H, DENG S J, et al. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(1): 1701110. |
30 | APPETECCHI G B, CROCE F, PERSI L, et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta, 2000, 45(8/9): 1481-1490. |
31 | APPETECCHI G B, SCACCIA S, PASSERINI S. Investigation on the stability of the lithium-polymer electrolyte interface[J]. Journal of the Electrochemical Society, 2000, 147(12): 4448. |
32 | STEPHAN A M, NAHM K S. Review on composite polymer electrolytes for lithium batteries[J]. Polymer, 2006, 47(16): 5952-5964. |
33 | STEPHAN A M. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1):21-42. |
34 | SURIYAKUMAR S, GOPI S, KATHIRESAN M, et al. Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries[J]. Electrochimica Acta, 2018, 285: 355-364. |
35 | ISMAIL I, NODA A, NISHIMOTO A, et al. XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes[J]. Electrochimica Acta, 2001, 46(10/11): 1595-1603. |
36 | CHRISTIE A M, LILLEY S J, STAUNTON E, et al. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005, 433(7021): 50-53. |
37 | KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications, 2016, 66: 46-48. |
38 | TAO X Y, LIU Y Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Letters, 2017, 17(5): 2967-2972. |
39 | WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. |
40 | FU K K, GONG Y H, DAI J Q, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099. |
41 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: 17035. |
42 | ZHANG J F, MA C, LIU J T, et al. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery[J]. Journal of Membrane Science, 2016, 509: 138-148. |
43 | ONISHI K, MATSUMOTO M, NAKACHO Y, et al. Synthesis of aluminate polymer complexes as single-ionic solid electrolytes[J]. Chemistry of Materials, 1996, 8(2): 469-472. |
44 | KALITA M, BUKAT M, CIOSEK M, et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes[J]. Electrochimica Acta, 2005, 50(19): 3942-3948. |
45 | PLEWA A, CHYLIŃSKI F, KALITA M, et al. Influence of macromolecular additives on transport properties of lithium organic electrolytes[J]. Journal of Power Sources, 2006, 159(1): 431-437. |
46 | ZHANG J J, ZANG X, WEN H J, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10): 4940-4948. |
47 | ZHANG X K, XIE J, SHI F F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Letters, 2018, 18(6): 3829-3838. |
48 | HOROWITZ Y, LIFSHITZ M, GREENBAUM A, et al. Review—polymer/ceramic interface barriers: The fundamental challenge for advancing composite solid electrolytes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160514. |
49 | WANG Y, ZANELOTTI C J, WANG X E, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, 20(9): 1255-1263. |
50 | ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
51 | CHEN B, HUANG Z, CHEN X T, et al. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery[J]. Electrochimica Acta, 2016, 210: 905-914. |
52 | HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. |
[1] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
[2] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[3] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[4] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[5] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[6] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[7] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[8] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[9] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[10] | Zhuo XU, Xichao LI, Longzhou JIA, Bing CHEN, Zuoqiang DAI, Lili ZHENG. Effect of overcharge cycle on capacity attenuation and safety of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 3978-3986. |
[11] | Xiaohan LI, Lei SUN, Yong MA, Dongliang GUO, Peng XIAO, Jianjun LIU, Peng WU, Zhihang ZHANG, Xuebing HAN. Energy state estimation of lithium-ion batteries based on sage-husa EKF algorithm [J]. Energy Storage Science and Technology, 2022, 11(11): 3603-3612. |
[12] | Yong LUO, Zhenyu ZHOU, Futao SHEN, Huan HUANG, Xiaobin QIU, yongyong WENG. Electrothermal coupling modeling of battery pack considering time-varying parameters [J]. Energy Storage Science and Technology, 2022, 11(10): 3180-3190. |
[13] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[14] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[15] | Huakun HU, Xinli LI, Wendong XUE, Peng JIANG, Yong LI. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||