Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2092-2102.doi: 10.19799/j.cnki.2095-4239.2022.0125
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jianxiang DENG1(), Jinliang ZHAO2, Chengde HUANG2(
)
Received:
2022-03-23
Revised:
2022-04-16
Online:
2022-07-05
Published:
2022-06-29
Contact:
Chengde HUANG
E-mail:kelly@fullymax.com;cdhuang@tju.edu.cn
CLC Number:
Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102.
Table 1
The performance parameters of different binders"
黏结剂 | 合成方式 | 负极材料 | 首次库仑效率/首次容量 | 循环性能 | 参考文献 |
---|---|---|---|---|---|
CA-PAA | 原位交联 | SiNPs | 89.5% | 78%/50th,0.1 C | [ |
4A-PAA | 自由基聚合 | SiO x /C | — | 89.1%/200th,0.16 A/g | [ |
PDA-PAA | 接枝 | SiNPs | 3192 mAh/g | 77.7%/100th,2 C | [ |
PAA-VTEO | 水溶液共聚 | Si/C | 89.4% | 99.17%/100th,0.1 C | [ |
PVDF-g-PtBA | 自由基聚合 | SiNPs | 78% | 84%/50th,0.05 C | [ |
碳化PVDF | 固态反应 | Si/Cu/Cu3Si/C | 82% | 1773 mAh/g/300th,2 A/g | [ |
Sn4+-PEDOT:PSS | 离子交联 | SiNPs | 3400 mAh/g | 1876.4 mAh/g/100th,8 A/g | [ |
甘油-PEDOT:PSS | 交联 | SiNPs | 85.6% | 1951.5 mAh/g/200th,0.5 A/g | [ |
PANI-PAA | 聚合 | SiNPs | — | 83%/100th,840 mA/g | [ |
PNaM | 乳液聚合 | Si/C | 88% | 75%/200th,C/3 | [ |
PPy-b-PB | 缩合 | SiNPs | 77.9% | 87.1%/200th,0.84 A/g | [ |
CMC-PDA | 聚合 | SiNPs | 87% | 80%/150th,0.2 C | [ |
CMC-PEG | 原位交联 | SiNPs | 81% | 78%/350th,0.5 C | [ |
Ni2+-Alg | 离子交联 | SiNPs | 81.8% | 83.1%/500th,0.2 C | [ |
c-Alg-g-PAAm | 双交联 | Si/C | 72.8% | 71.6%/100th,0.1 C | [ |
TA | SiNPs | 86% | 850/650th,0.5 C | [ | |
OG | SiNPs | 2067 mAh/g | 99%/50th,0.1 C | [ | |
PG-c-ECH | 化学交联 | SiNPs | 60 mAh/cm2 | 92.8%/300th,4 A/g | [ |
PAL-NaPAA | 自由基聚合 | 硅微粒 | 1914 mAh/g/100th | [ |
1 | FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1702737. |
2 | LI S, LIU Y M, ZHANG Y C, et al. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229331. |
3 | LI J, WU Z, LU Y, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[j]. advanced energy materials, 2017, 7(24): 1701185. |
4 | KWON T W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47(6): 2145-2164. |
5 | YANG Y J, WU S X, ZHANG Y P, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal, 2021, 406: 126807. |
6 | ZHAO H, WEI Y, QIAO R, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application[J]. Nano Letters, 2015,15(12):7927-7932. |
7 | MIRANDA A, SARANG K, GENDENSUREN B, et al. Molecular design principles for polymeric binders in silicon anodes[J]. Molecular Systems Design & Engineering, 2020, 5(4): 709-724. |
8 | KIM J M, CHO Y, GUCCINI V, et al. TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries[J]. Electrochimica Acta, 2021, 369: 137708. |
9 | MA L J, MENG J Q, PAN Y, et al. Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(8): 2003-2011. |
10 | TIAN M, CHEN X, SUN S T, et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12(5): 1121-1127. |
11 | SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. |
12 | SUN S, HE D L, LI P, et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454: 227907. |
13 | HU Y J, SHAO D, CHEN Y T, et al. A physically cross-linked hydrogen-bonded polymeric composite binder for high-performance silicon anodes[J]. ACS Applied Energy Materials, 2021, 4(10): 10886-10895. |
14 | HU X C, LIANG K, LI J B, et al. A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries[J]. Materials Today Communications, 2021, 28: 102530. |
15 | DING B, HUANG X N, CAI Z F, et al. Effects of binders on electrochemical properties of high capacity silicon composite anodes[J]. Inorganic Chemistry Communications, 2020, 113: 107771. |
16 | SON J, VO T N, CHO S, et al. Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2020, 458: 228054. |
17 | YU L M, LUO Z, GONG C R, et al. Water-based binder with easy reuse characteristics for silicon/graphite anodes in lithium-ion batteries[J]. Polymer Journal, 2021, 53(8): 923-935. |
18 | 刘铁峰, 张奔, 盛欧微, 等. 硅负极黏结剂的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1446-1463. |
LIU T F, ZHANG B, SHENG O W, et al. Research progress of the binders for the silicon anode[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1446-1463. | |
19 | JIAO X X, YUAN X D, YIN J Q, et al. Multiple network binders via dual cross-linking for silicon anodes of lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 10306-10313. |
20 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129. |
21 | LUO C, WU X F, ZHANG T, et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode[J]. Macromolecular Materials and Engineering, 2021, 306(1): 2000525. |
22 | ZHANG Y, WANG X Y, MA L, et al. Polydopamine blended with polyacrylic acid for silicon anode binder with high electrochemical performance[J]. Powder Technology, 2021, 388: 393-400. |
23 | LIU S J, CHENG S K, XIE M, et al. A delicately designed functional binder enabling in situ construction of 3D cross-linking robust network for high-performance Si/graphite composite anode[J]. Journal of Polymer Science, 2021: https://doi.org/10.1002/pol. 20210800. |
24 | LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127. |
25 | SUH S, YOON H, PARK H, et al. Enhancing the electrochemical performance of silicon anodes for lithium-ion batteries: One-pot solid-state synthesis of Si/Cu/Cu3Si/C electrode[J]. Applied Surface Science, 2021, 567: 150868. |
26 | LIU X J, IQBAL A, ALI N, et al. Ion-cross-linking-promoted high-performance Si/PEDOT: PSS electrodes: The importance of cations' ionic potential and softness parameters[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19431-19438. |
27 | LIU X J, ZAI J T, IQBAL A, et al. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity[J]. Journal of Colloid and Interface Science, 2020, 565: 270-277. |
28 | WANG X Y, ZHANG Y, SHI Y J, et al. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries[J]. Ionics, 2019, 25(11): 5323-5331. |
29 | ZHENG T Y, ZHANG T, DE LA FUENTE M S, et al. Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries[J]. European Polymer Journal, 2019, 114: 265-270. |
30 | YE Q Q, ZHENG P T, AO X H, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries[J]. Electrochimica Acta, 2019, 315: 58-66. |
31 | TANG R X, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
32 | LEE D, PARK H, GOLIASZEWSKI A, et al. In situ cross-linked carboxymethyl cellulose-polyethylene glycol binder for improving the long-term cycle life of silicon anodes in Li ion batteries[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8123-8130. |
33 | GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269: 405-414. |
34 | GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384: 379-386. |
35 | SARANG K T, LI X Y, MIRANDA A, et al. Tannic acid as a small-molecule binder for silicon anodes[J]. ACS Applied Energy Materials, 2020, 3(7): 6985-6994. |
36 | LING H Y, HENCZ L, CHEN H, et al. Sustainable okra gum for silicon anode in lithium-ion batteries[J]. Sustainable Materials and Technologies, 2021, 28: e00283. |
37 | LI Z H, WAN Z W, ZENG X Q, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy, 2021, 79: 105430. |
38 | LUO C, DU L L, WU W, et al. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. |
39 | LINGAPPAN N, KONG L X, PECHT M. The significance of aqueous binders in lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111227. |
40 | WANG H L, WU B Z, WU X K, et al. Key factors for binders to enhance the electrochemical performance of silicon anodes through molecular design[J]. Small, 2022, 18(1): 2101680. |
41 | ZHAO Y M, YUE F S, LI S C, et al. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries[J]. Info Mat, 2021, 3(5): 460-501. |
42 | FAN X M, WANG Z H, CAI T, et al. An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery[J]. Carbon, 2021, 182: 749-757. |
43 | TSAI C Y, LIU Y L. 2, 2-Dimethyl-1, 3-dioxane-4, 6‑dione functionalized poly(ethylene oxide)-based polyurethanes as multi-functional binders for silicon anodes of lithium ion batteries[J]. Electrochimica Acta, 2021, 379: 138180. |
44 | CHEN H Y, ZHENG M D, CHEN Y, et al. PANI-based conductive polymer composites as water-soluble binders for nano-silicon anodes in lithium-ion batteries[J]. Ionics, 2021, 27(2): 587-597. |
45 | CARABETTA J, JOB N. Silicon-doped carbon xerogel with poly(sodium 4-styrenesulfonate) as a novel protective coating and binder[J]. Microporous and Mesoporous Materials, 2021, 310: 110622. |
46 | TANG R X, MA L, ZHANG Y, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000. |
47 | WANG L, LIU T F, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(3): 1704858. |
48 | WU S, YANG Y, LIU C, et al. In-Situ Polymerized Binder: A Three-in-One Design Strategy for All-Integrated SiOx Anode with High Mass Loading in Lithium Ion Batteries[J]. ACS Energy Letters, 2021,6(1): 290-297. |
49 | HUANG J, LIU B Y, ZHANG P, et al. A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries[J]. Solid State Ionics, 2021, 373: 115807. |
50 | TASKIN O S, HUBBLE D, ZHU T Y, et al. Biomass-derived polymeric binders in silicon anodes for battery energy storage applications[J]. Green Chemistry, 2021, 23(20): 7890-7901. |
51 | HU S M, CAI Z X, HUANG T, et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4311-4317. |
52 | YOU R, HAN X, ZHANG Z Q, et al. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries[J]. Ionics, 2019, 25(9): 4109-4118. |
53 | YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109113. |
54 | GUO R N, ZHANG S L, YING H J, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. ChemSusChem, 2019, 12(21): 4838-4845. |
55 | LIU J, ZHANG Q, WU Z Y, et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications (Cambridge, England), 2014, 50(48): 6386-6389. |
56 | KIM S, JEONG Y K, WANG Y, et al. A "sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26): 1707594. |
57 | LI Z H, JI J P, WU Q, et al. A new battery process technology inspired by partially carbonized polymer binders[J]. Nano Energy, 2020, 67: 104234. |
58 | HUANG L H, LI C C. Effects of interactions between binders and different-sized silicons on dispersion homogeneity of anodes and electrochemistry of lithium-silicon batteries[J]. Journal of Power Sources, 2019, 409: 38-47. |
[1] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[2] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[3] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[4] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[5] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[8] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[9] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[10] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[11] | Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites [J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. |
[12] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[13] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[14] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[15] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||