Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2305-2315.doi: 10.19799/j.cnki.2095-4239.2021.0665
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shunmin YI(), Linbo XIE(), Li PENG
Received:
2021-12-13
Revised:
2022-01-18
Online:
2022-07-05
Published:
2022-06-29
Contact:
Linbo XIE
E-mail:shunmin.yi@outlook.com;xie_linbo@jiangnan.edu.cn
CLC Number:
Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN[J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315.
1 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
2 | OMARIBA Z B, ZHANG L J, SUN D B. Review on health management system for lithium-ion batteries of electric vehicles[J]. Electronics, 2018, 7: 72. |
3 | 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030. |
YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030. | |
4 | ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24. |
5 | 康鑫, 时玮, 陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术, 2020, 9(3): 969-978. |
KANG X, SHI W, CHEN H T. Parameter identification based on simplified electrochemical model of lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 969-978. | |
6 | 朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362. |
ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. | |
7 | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. | |
8 | CHANG Y, FANG H J, ZHANG Y. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J]. Applied Energy, 2017, 206: 1564-1578. |
9 | WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. |
10 | 陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210. |
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210. | |
11 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
12 | PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Applied Energy, 2015, 159: 285-297. |
13 | CHANG Y, FANG H J. A hybrid prognostic method for system degradation based on particle filter and relevance vector machine[J]. Reliability Engineering & System Safety, 2019, 186: 51-63. |
14 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
15 | 陈峥, 李磊磊, 舒星, 等. 基于特征处理与径向基神经网络的锂电池剩余容量估算方法[J]. 储能科学与技术, 2021, 10(1): 261-270. |
CHEN Z, LI L L, SHU X, et al. Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network[J]. Energy Storage Science and Technology, 2021, 10(1): 261-270. | |
16 | CHEN L, ZHANG Y, ZHENG Y, et al. Remaining useful life prediction of lithium-ion battery with optimal input sequence selection and error compensation[J]. Neurocomputing, 2020, 414: 245-254. |
17 | XUE Z W, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376: 95-102. |
18 | SATEESH BABU G, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Database Systems for Advanced Applications, 2016. |
19 | MA G J, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. |
20 | 易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573. |
YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573. | |
21 | QIN T C, ZENG S K, GUO J B, et al. A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena[J]. Energies, 2016, 9(11): 896. |
22 | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
23 | BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2010, 3(1): 1-122. |
24 | CAO L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50. |
25 | SHEN Z P, ZHANG Y M, LU J W, et al. SeriesNet: A generative time series forecasting model[C]//2018 International Joint Conference on Neural Networks (IJCNN). July 8-13, 2018, Rio de Janeiro, Brazil. IEEE, 2018: 1-8. |
26 | LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 1003-1012. |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. |
28 | CHANG S Y, ZHANG Y, HAN W, et al. Dilated recurrent neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2017: 76-86. |
29 | LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 95-104. |
30 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007. |
31 | LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(6): 915-928. |
32 | FAN J M, FAN J P, LIU F, et al. A novel machine learning method based approach for Li-ion battery prognostic and health management[J]. IEEE Access, 2019, 7: 160043-160061. |
[1] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[2] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[3] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[4] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[5] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[6] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[7] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[8] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[9] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[10] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[11] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[12] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[13] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[14] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[15] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||