Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2133-2140.doi: 10.19799/j.cnki.2095-4239.2022.0077
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhongbo LI1(), Jingxiao HAN1, Chengcheng WANG2, Hui YANG2, Na YANG2, Shaowu YIN2,3, Li WANG2,3, Lige TONG2,3(), Zhiwei TANG4, Yulong DING5
Received:
2022-02-15
Revised:
2022-03-15
Online:
2022-07-05
Published:
2022-06-29
Contact:
Lige TONG
E-mail:digilee@126.com;tonglige@me.ustb.edu.cn
CLC Number:
Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor[J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140.
Table 2
Numerical simulation calculation parameters and basic operating conditions of air"
参数 | 数值 |
---|---|
床层孔隙率,εb | 0.438 |
硅胶球热导率,λp/[W/(m·K)] | 0.35 |
硅胶球密度,ρp/(kg/m3) | 1.2×103 |
亲和系数,D | 0.48 |
活化能,Ea/(J/mol) | 4.15×104 |
指前因子,D0/(m2/s) | 1.3×10-3 |
最大吸水量,W0/kg·kg-1 | 0.346 |
非均质参数,n | 1.6 |
硅胶球粒径,dp/m | 4×10-3 |
空气进口温度,Tin/℃ | 38 |
进口空气流速,va/(m/s) | 0.428 |
进口空气相对湿度,RH/% | 80 |
1 | Renewables global status report[R/OL]. https://www.iea.org/reports/renewables-2021. |
2 | IEA. Renewable and non-renewable heat consumption and heat-related CO2 emissions in buildings, 2010—2020, IEA, ParisR/OL].https://www.iea.org/data-and-statistics/charts/renewable-and-non-renewable-heat-consumption-and-heat-related-CO2-emissions-in-buildings-2010-2020. |
3 | Global Energy Review 2021. https://www.iea.org/reports/global-energy-review-2021. |
4 | VAN SOEST H L, DEN ELZEN M G J, VAN VUUREN D P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement[J]. Nature Communications, 2021, 12: 2140. |
5 | ALLEN-DUMAS M R, ROSE A N, NEW J R, et al. Impacts of the morphology of new neighborhoods on microclimate and building energy[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110030. |
6 | 杨慧, 童莉葛, 尹少武, 等. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162. |
YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162. | |
7 | LIZANA J, CHACARTEGUI R, BARRIOS-PADURA A, et al. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review[J]. Applied Energy, 2017, 203: 219-239. |
8 | FOPAH LELE A, KUZNIK F, RAMMELBERG H U, et al. Thermal decomposition kinetic of salt hydrates for heat storage systems[J]. Applied Energy, 2015, 154: 447-458. |
9 | KUZNIK F, JOHANNES K, OBRECHT C, et al. A review on recent developments in physisorption thermal energy storage for building applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 576-586. |
10 | KRESE G, KOŽELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy and Buildings, 2018, 164: 239-253. |
11 | PENG X Y, YAO M, ROOT T W, et al. Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage[J]. Applied Energy, 2020, 262: 114543. |
12 | CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145. |
13 | DING B, XU C, LIAO Z R, et al. Study on long-term thermochemical thermal storage performance based on SrBr2-expanded vermiculite composite materials[J]. Journal of Energy Storage, 2021, 42: 103081. |
14 | MUKHERJEE A, MAJUMDAR R, SAHA S K, et al. Performance evaluation of an open thermochemical energy storage system integrated with flat plate solar collector[J]. Applied Thermal Engineering, 2020, 173: 115218. |
15 | HAN X J, LIU S L, ZENG C, et al. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor[J]. Renewable Energy, 2020, 150: 1037-1046. |
16 | FARCOT L, LE PIERRÈS N, MICHEL B, et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20: 109-119. |
17 | TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500. |
18 | LI W, GUO H, ZENG M, et al. Performance of SrBr2 ·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. |
19 | FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009. |
20 | ZENG C, LIU S L, YANG L, et al. Investigation of a three-phase thermochemical reactor through an experimentally validated numerical modelling[J]. Applied Thermal Engineering, 2019, 162: 114223. |
21 | WANG C C, YANG H, NIE B J, et al. Discharging behavior of a shell-and-tube based thermochemical reactor for thermal energy storage: Modeling and experimental validation[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122160. |
22 | MICHEL B, NEVEU P, MAZET N. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72: 702-716. |
23 | 刘业凤, 范宏武, 王如竹. 新型复合吸附剂SiO2 · xH2O· yCaCl2与常用吸附剂空气取水性能的对比实验研究[J]. 太阳能学报, 2003, 24(2): 141-144. |
LIU Y F, FAN H W, WANG R Z. Performances comparison of a new composite adsorbent SiO2 · xH2O· yCaCl2 and other common adsorbents to extract water from air[J]. Acta Energiae Solaris Sinica, 2003, 24(2): 141-144. | |
24 | 杨娜, 王成成, 杨慧, 等. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
YANG N, WANG C C, YANG H, et al. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction[J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. | |
25 | MANILA M R, MITRA S, DUTTA P. Studies on dynamics of two-stage air cooled water/silica gel adsorption system[J]. Applied Thermal Engineering, 2020, 178: 115552. |
26 | YEBOAH S K, DARKWA J. Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds[J]. Data in Brief, 2021, 34: 106736. |
27 | XU C, XIE Y Y, LIAO Z R, et al. Numerical study on the desorption process of a thermochemical reactor filled with MgCl2 ·6H2O for seasonal heat storage[J]. Applied Thermal Engineering, 2019, 146: 785-794. |
28 | PESARAN A A, MILLS A F. Moisture transport in silica gel packed beds (II): Experimental study[J]. International Journal of Heat and Mass Transfer, 1987, 30(6): 1051-1060. |
29 | HUTSON N D, YANG R T. Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation[J]. Adsorption, 1997, 3(3): 189-195. |
30 | MOHAMMED R H, MESALHY O, ELSAYED M L, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137: 368-376. |
31 | SIRCAR S, HUFTON J R. Why does the linear driving force model for adsorption kinetics work?[J]. Adsorption, 2000, 6(2): 137-147. |
32 | RUIVO C R, FIGUEIREDO A R, COSTA J J. Correlations for the mass transfer coefficient in desiccant matrices when using linear driving force and pseudo-gas-side-controlled models[J]. Energy, 2014, 75: 613-623. |
33 | EDELMANN D, MÓRI T F, SZÉKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960. |
34 | DELURGIO S. Forecasting principles and applications[M]. Richard D Irwin, 1998. |
[1] | Yelong ZHANG, Qi MIAO, Pengfei SONG, Linghua TAN, Yi JIN, Yulong DING. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorption materials [J]. Energy Storage Science and Technology, 2023, 12(1): 42-50. |
[2] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
[3] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[4] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[5] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[6] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[7] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[8] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[9] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[12] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[13] | Yachao MO, Jun YAN, Changying ZHAO. Preparation and thermal storage properties of CaO/Ca(OH) 2 core-shell-structured particles [J]. Energy Storage Science and Technology, 2022, 11(12): 3828-3835. |
[14] | Yongliang SHEN, Pengwei ZHANG, Shuli LIU. Three-dimensional numerical study of discharging characteristics of a fin-enhanced cascaded latent heat storage system [J]. Energy Storage Science and Technology, 2022, 11(11): 3558-3565. |
[15] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||