Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3364-3370.doi: 10.19799/j.cnki.2095-4239.2022.0064
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Sifei ZHOU(), Jun LI(), Daoming ZHANG, Haoliang XUE, Xiaofei WANG
Received:
2022-02-10
Revised:
2022-03-15
Online:
2022-10-05
Published:
2022-10-10
Contact:
Jun LI
E-mail:sz14f2601@163.com;lijun.sshy@sinopec.com
CLC Number:
Sifei ZHOU, Jun LI, Daoming ZHANG, Haoliang XUE, Xiaofei WANG. Statistics method-based optimization of electrolyte conductivity of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3364-3370.
Table 1
Solvent composition for space filling mixture design"
环状碳酸酯(EC) | 线性碳酸酯 | 羧酸酯 | EMC | DEC | DMC | EA | MP | EP |
---|---|---|---|---|---|---|---|---|
0.269 | 0.550 | 0.181 | 0.043 | 0.953 | 0.004 | 0.189 | 0.202 | 0.609 |
0.129 | 0.529 | 0.342 | 0.140 | 0.275 | 0.585 | 0.012 | 0.088 | 0.900 |
0.279 | 0.422 | 0.299 | 0.372 | 0.416 | 0.212 | 0.470 | 0.015 | 0.515 |
0.166 | 0.507 | 0.327 | 0.985 | 0.013 | 0.002 | 0.847 | 0.062 | 0.091 |
0.297 | 0.305 | 0.398 | 0.022 | 0.323 | 0.655 | 0.609 | 0.355 | 0.036 |
0.156 | 0.600 | 0.244 | 0.114 | 0.819 | 0.067 | 0.540 | 0.439 | 0.021 |
0.118 | 0.589 | 0.293 | 0.560 | 0.039 | 0.401 | 0.260 | 0.349 | 0.391 |
0.278 | 0.566 | 0.156 | 0.193 | 0.017 | 0.790 | 0.048 | 0.899 | 0.053 |
0.248 | 0.360 | 0.392 | 0.785 | 0.188 | 0.027 | 0.082 | 0.684 | 0.234 |
0.211 | 0.479 | 0.310 | 0.018 | 0.728 | 0.254 | 0.001 | 0.830 | 0.169 |
1 | LOGAN E, TONITA E, GERING K, et al. A critical evaluation of the advanced electrolyte model[J]. Journal of the Electrochemical Society, 2018, 165(14): doi: 10.1149/2.0471814jes. |
2 | 陈仕谋, 秦虎, 刘敏. 锂离子电池电解液标准解读[J]. 储能科学与技术, 2018, 7(6): 1253-1260. |
CHEN S M, QIN H, LIU M. Studies on the standard of lithium ion battery electrolyte[J]. Energy Storage Science and Technology, 2018, 7(6): 1253-1260. | |
3 | 胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. |
HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. | |
4 | 史周华. 析因设计的SAS实现[J]. 数理医药学杂志, 2005, 18(6): 604-605. |
SHI Z H. Procedures of SAS based on factorial design[J]. Journal of Mathematical Medicine, 2005, 18(6):604-605. | |
5 | 胡纯严, 胡良平. 如何正确运用析因设计——怎样在药物应用与监测研究中正确运用统计学(五)[J]. 中国药物应用与监测, 2008, 5(5): 44-47. |
6 | MYERS R H, MONTGOMERY D C, VINING G G, et al. Response surface methodology: A retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36(1): 53-77. |
7 | LI M X, LIU F X, WANG X W, et al. Optimization of flotation process of zinc oxide ore by response surface methodology[C]//Proceedings of the 2015 International Conference on Materials Engineering and Information Technology Applications. August 30-31, 2015. Guilin, China. Paris, France: Atlantis Press, 2015: 1012-1016. |
8 | 曾凤章, 赵霞. 田口方法及其标准化设计[J]. 机械工业标准化与质量, 2003(11): 7-9. |
9 | 程敬丽, 郑敏, 楼建晴. 常见的试验优化设计方法对比[J]. 实验室研究与探索, 2012, 31(7): 7-11. |
CHENG J L, ZHENG M, LOU J Q. Comparison of several common optimal experimental design methods[J]. Research and Exploration in Laboratory, 2012, 31(7): 7-11. | |
10 | 刘桂宾. 超饱和设计的构造及其数据分析[J]. 天津农学院学报, 2007, 14(3): 33-35, 37. |
LIU G B. Construction and analysis of supersatured design[J]. Journal of Tianjin Agricultural University, 2007, 14(3): 33-35, 37. | |
11 | 陈洁. 最优超饱和设计与正交设计的构造[D]. 天津: 南开大学, 2010. |
CHEN J. Construction of optimal supersaturated designs and orthogonal designs[D]. Tianjin: Nankai University, 2010. | |
12 | MOLDES A, CENDÓN Y, BARRAL M T. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design[J]. Bioresource Technology, 2007, 98(16): 3069-3075. |
13 | CHEN L C, HUANG C M, HSIAO M C, et al. Mixture design optimization of the composition of S, C, SnO2-codoped TiO2 for degradation of phenol under visible light[J]. Chemical Engineering Journal, 2010, 165(2): 482-489. |
14 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
15 | 魏孟, 李嘉波, 叶敏, 等. 基于高斯混合回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(3): 958-963. |
WEI M, LI J B, YE M, et al. SOC estimation of Li-ion battery based on Gaussian mixture regression[J]. Energy Storage Science and Technology, 2020, 9(3): 958-963. | |
16 | 李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1): 131-137. |
LI J B, WEI M, YE M, et al. SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2020, 9(1): 131-137. | |
17 | JONES B, GOOS P. Optimal design of blocked experiments in the presence of supplementary information about the blocks[J]. Journal of Quality Technology, 2015, 47(4): 301-317. |
18 | JONES B, JOHNSON R T. Design and analysis for the Gaussian process model[J]. Quality and Reliability Engineering International, 2009, 25(5): 515-524. |
19 | JOSEPH V R, GUL E, BA S. Maximum projection designs for computer experiments[J]. Biometrika, 2015, 102(2): 371-380. |
20 | SMITH R C. Uncertainty quantification. theory, implementation, and applications[M]. Siam, 2013. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[4] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[5] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[6] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[7] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[8] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[9] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[10] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[11] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[12] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[13] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[14] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[15] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||