Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1289-1304.doi: 10.19799/j.cnki.2095-4239.2022.0209
Previous Articles Next Articles
Ronghan QIAO(), Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-04-18
Revised:
2022-04-18
Online:
2022-05-05
Published:
2022-05-07
Contact:
Xuejie HUANG
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304.
1 | GENG C X, RATHORE D, HEINO D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials[J]. Advanced Energy Materials, 2022, 12(6): doi: 10.1002/aenm. 202103067. |
2 | PARK K Y, ZHU Y Z, TORRES-CASTANEDO C G, et al. Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes[J]. Advanced Materials, 2022, 34(3): doi: 10.1002/adma.202106402. |
3 | HAO Q, DU F H, XU T, et al. Evaluation of Nb-doping on performance of LiNiO2 in wide temperature range[J]. Journal of Electroanalytical Chemistry, 2022, 907: doi: 10.1016/j.jelechem. 2022.116034. |
4 | ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48720-48729. |
5 | QIU Q Q, YUAN S S, BAO J, et al. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution[J]. Journal of Energy Chemistry, 2021, 61: 574-581. |
6 | ZHANG Y D, LI H, LIU J X, et al. Enhancing LiNiO2 cathode materials by concentration-gradient yttrium modification for rechargeable lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 63: 312-319. |
7 | FAN X M, HUANG Y D, WEI H X, et al. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability[J]. Advanced Functional Materials, 2022, 32(6): doi: 10.1002/adfm.202109421. |
8 | ZHANG L M, XIAO J C, WANG J R, et al. Active-site-specific structural engineering enabled ultrahigh rate performance of the NaLi3 Fe3(PO4)2(P2O7) cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11255-11263. |
9 | TERANISHI T, YAMANAKA R, MIMURA K I, et al. Ultrafast ion transport via dielectric nanocube interface[J]. Advanced Materials Interfaces, 2022, 9(4): doi: 10.1002/admi.202101682. |
10 | LUO Y, WANG Y, LI L S, et al. Identifying element-modulated reactivity and stability of the high-voltage spinel cathode materials via in situ time-resolved X-ray diffraction[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58467-58474. |
11 | AN Y L, TIAN Y, LIU C K, et al. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries[J]. ACS Nano, 2022, 16(3): 4560-4577. |
12 | WANG H Z, MAN H, YANG J H, et al. Self-adapting electrochemical grinding strategy for stable silicon anode[J]. Advanced Functional Materials, 2022, 32(6): doi: 10.1002/adfm.202109887. |
13 | FANG J B, CAO Y Q, CHANG S Z, et al. Dual-design of nanoporous to compact interface via atomic/molecular layer deposition enabling a long-life silicon anode[J]. Advanced Functional Materials, 2022, 32(7): doi: 10.1002/adfm.202109682. |
14 | LIU Z G, LU D Z, WANG W, et al. Integrating dually encapsulated Si architecture and dense structural engineering for ultrahigh volumetric and areal capacity of lithium storage[J]. ACS Nano, 2022, 16(3): 4642-4653. |
15 | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials, 2022: doi: 10.1002/adma.202109658. |
16 | CHEN M Y, DUAN P X, ZHONG Y J, et al. Constructing a sheet-stacked Si/C composite by recycling photovoltaic Si waste for Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2809-2816. |
17 | LU J J, LIU S L, LIU J H, et al. Millisecond conversion of photovoltaic silicon waste to binder-free high silicon content nanowires electrodes[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202102103. |
18 | DONG Z, DU W B, GU H T, et al. A unique structural highly compacted binder-free silicon-based anode with high electronic conductivity for high-performance lithium-ion batteries[J]. Small Structures, 2022, 3(2): doi: 10.1002/sstr.202100174. |
19 | LU W W, YANG H C, CHEN J, et al. Highly elastic wrinkled structures for stable and low volume-expansion lithium-metal anodes[J]. Science China Materials, 2021, 64(11): 2675-2682. |
20 | KIM S S, JUNG S M, SENTHIL C, et al. Unlocking rapid charging and extended lifetimes for Li-ion batteries using freestanding quantum conversion-type aerofilm anode[J]. ACS Nano, 2021, 15(11): 18437-18447. |
21 | LIANG N, XU H, FAN H M, et al. Cryogenic mechanical prelithiation reduces porosity and improves battery performance of an alloy foil anode[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13326-13334. |
22 | BAUER M, PFEIFER K, LUO X L, et al. Functionalization of graphite electrodes with aryl diazonium salts for lithium-ion batteries[J]. ChemElectroChem, 2022, 9(8): doi: 10.1002/celc. 202101434. |
23 | ZHOU J H, MA K N, LIAN X Y, et al. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries[J]. Small, 2022, 18(15): doi: 10.1002/smll. 202107460. |
24 | AI L F, CHEN Z Y, LI S P, et al. Stabilizing Li plating by a fluorinated hybrid protective layer[J]. ACS Applied Energy Materials, 2021, 4(12): 14407-14414. |
25 | BEICHEL W, SKROTZKI J, KLOSE P, et al. An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries[J]. Batteries & Supercaps, 2022, 5(2): doi: 10.1002/batt.202100347. |
26 | BANIYA A, GURUNG A, POKHAREL J, et al. Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer[J]. ACS Applied Energy Materials, 2022, 5(1): 648-657. |
27 | YANG L, TAO X Y, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063. |
28 | CHANDRA S, KIM Y, VIVONA D, et al. Thermally-driven reactivity of Li0.35La0.55TiO3 solid electrolyte with LiCoO2 cathode[J]. Journal of Materials Chemistry A, 2022, 10(7): 3485-3494. |
29 | ITO A, KIMURA T, SAKUDA A, et al. Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 2-7. |
30 | TAKAHASHI M, YANG S, YAMAMOTO K, et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis[J]. Solid State Ionics, 2021, 361: doi: 10.1016/j.ssi. 2021.115568. |
31 | KOÇ T, MARCHINI F, ROUSSE G, et al. In search of the best solid electrolyte-layered oxide pairing for assembling practical all-solid-state batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 13575-13585. |
32 | ZHOU L, TUFAIL M K, LIAO Y Z, et al. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li-SeS2 batteries[J]. Advanced Fiber Materials, 2022: 1-16. |
33 | DONG P P, JIAO Q, ZHANG Z C, et al. Controllable Li3PS4-Li4SnS4 solid electrolytes with affordable conductor and high conductivity for solid-state battery[J]. Journal of the American Ceramic Society, 2022, 105(5): 3252-3260. |
34 | XU H J, CAO G Q, SHEN Y L, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12282. |
35 | ALVAREZ-TIRADO M, GUZMÁN-GONZÁLEZ G, VAUTHIER S, et al. Designing boron-based single-ion gel polymer electrolytes for lithium batteries by photopolymerization[J]. Macromolecular Chemistry and Physics, 2022: doi: 10.1002/macp.202100407. |
36 | LIANG H P, ZARRABEITIA M, CHEN Z, et al. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200013. |
37 | STOLZ L, HOCHSTÄDT S, RÖSER S, et al. Single-ion versus dual-ion conducting electrolytes: The relevance of concentration polarization in solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11559-11566. |
38 | ZENG Q H, CHEN P P, LI Z F, et al. Application of a modified porphyrin in a polymer electrolyte with superior properties for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48569-48581. |
39 | DIDWAL P N, VERMA R, NGUYEN A G, et al. Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte[J]. Advanced Science, 2022: doi: 10.1002/advs.202105448. |
40 | LI Z, FU J, ZHENG S, et al. Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022: doi: 10.1002/smll.202200891. |
41 | LI M J, YANG J X, SHI Y Q, et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202107226. |
42 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
43 | YANG J X, LIU X, WANG Y A, et al. Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(39): doi: 10.1002/aenm.202101956. |
44 | LI H, WEN Z P, WU D Z, et al. Achieving a stable solid electrolyte interphase and enhanced thermal stability by a dual-functional electrolyte additive toward a high-loading LiNi 0.8 Mn0.1 Co0.1 O2/lithium pouch battery[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57142-57152. |
45 | LIU Y C, HONG L, JIANG R, et al. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57430-57441. |
46 | QIAO L, OTEO U, MARTINEZ-IBANEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J]. Nature Materials, 2022, 21(4):455-462. |
47 | AURBACH D, MARKEVICH E, SALITRA G. High energy density rechargeable batteries based on Li metal anodes. the role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents[J]. Journal of the American Chemical Society, 2021, 143(50): 21161-21176. |
48 | JOHNSON N M, YANG Z Z, BLOOM I, et al. Enabling high-temperature and high-voltage lithium-ion battery performance through a novel cathode surface-targeted additive[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59538-59545. |
49 | WANG Z C, ZHANG H Y, XU J J, et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202112598. |
50 | WANG Y, ZHANG Y J, DONG S Y, et al. An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202103360. |
51 | YU Z, RUDNICKI P E, ZHANG Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106. |
52 | PIAO Z H, XIAO P T, LUO R P, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries[J]. Advanced Materials, 2022, 34(8): doi: 10.1002/adma.202108400. |
53 | ZHANG Y, WU Y, LI H, et al. A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries[J]. Nature Communications, 2022, 13(1): 1297. |
54 | KIM M S, ZHANG Z, RUDNICKI P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries [J]. Nature Materials, 2022, 21 (4): 445-454. |
55 | JIANG H Z, HAN Y, WANG H, et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. Journal of Alloys and Compounds, 2021, 874: doi: 10.1016/j.jallcom.2021.159763. |
56 | NAGATA H, AKIMOTO J. Room-temperature operation of lithium sulfide positive and silicon negative composite electrodes employing oxide solid electrolytes for all-solid-state battery[J]. Electrochemistry, 2022, 90(1): doi: 10.5796/electrochemistry.21-00112. |
57 | PARK S W, CHOI H J, YOO Y, et al. Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer[J]. Advanced Functional Materials, 2022, 32(5): doi: 10.1 002/adfm.202108203. |
58 | CHENG Z, PAN H, LI F, et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy [J]. Nature Communications, 2022, 13: 125. |
59 | SAHORE R, YANG G, CHEN X C, et al. A bilayer electrolyte design to enable high-areal-capacity composite cathodes in polymer electrolytes based solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 1409-1413. |
60 | TAO J M, WANG D Y, YANG Y M, et al. Swallowing lithium dendrites in all-solid-state battery by lithiation with silicon nanoparticles[J]. Advanced Science, 2022, 9(4): doi: 10.1002/advs.202103786. |
61 | JIAO X X, WANG J, GAO G X, et al. Stable Li-metal batteries enabled by in situ gelation of an electrolyte and in-built fluorinated solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60054-60062. |
62 | CHANG C Y, YAO Y, LI R R, et al. Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes[J]. Nano Energy, 2022, 93: doi: 10. 1016/j.nanoen.2021.106871. |
63 | WANG J L, ZHANG Z, YING H J, et al. An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency[J]. Journal of Materiomics, 2022, 8(2): 257-265. |
64 | KIM C, KIM J, PARK J, et al. Ion-conducting channel implanted anode matrix for all-solid-state batteries with high rate capability and stable anode/solid electrolyte interface[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202102045. |
65 | WANG T R, DUAN J, ZHANG B, et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries[J]. Energy & Environmental Science, 2022, 15(3): 1325-1333. |
66 | CHEN Y, YAO L, CHEN X D, et al. Double-faced bond coupling to induce an ultrastable lithium/Li6PS5Cl interface for high-performance all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11950-11961. |
67 | CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Argyrodite solid electrolyte-coated graphite as anode material for all-solid-state batteries[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 8-15. |
68 | HAKARI T, FUJITA Y, DEGUCHI M, et al. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Advanced Functional Materials, 2022, 32(5): doi: 10.1002/adfm.202106174. |
69 | YEN Y J, CHUNG S H. A Li2S-based catholyte/solid-state-electrolyte composite for electrochemically stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58712-58722. |
70 | LEI J, FAN X X, LIU T, et al. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries [J]. Nature Communications, 2022, 13: 202. |
71 | SUN R, BAI Y, BAI Z, et al. Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(12): doi: 10.1002/aenm. 202102739. |
72 | WANG J, YANG S H, XU Z J, et al. Addressing the prominent Li+ intercalation process of metal sulfide catalyst in Li-S batteries[J]. Advanced Materials Interfaces, 2022, 9(6): doi: 10.1002/admi. 202101699. |
73 | THRIPURANTHAKA M, CHATURVEDI V, DWIVEDI P K, et al. 3D X-ray microtomography investigations on the bimodal porosity and high sulfur impregnation in 3D carbon foam for Li-S battery application[J]. Journal of Physics: Energy, 2022, 4(1): doi: 10. 1088/2515-7655/ac4c34. |
74 | AL-TAHAN M A, DONG Y T, SHRSHR A E, et al. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator[J]. Journal of Colloid and Interface Science, 2022, 609: 235-248. |
75 | DONG F, PENG C X, XU H Y, et al. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics[J]. ACS Nano, 2021, 15(12): 20287-20299. |
76 | SHI M J, LIU Z, ZHANG S, et al. A Mott-Schottky heterogeneous layer for Li-S batteries: Enabling both high stability and commercial-sulfur utilization[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103657. |
77 | KUMBERG J, BAUER W, SCHMATZ J, et al. Reduced drying time of anodes for lithium-ion batteries through simultaneous multilayer coating[J]. Energy Technology, 2021, 9(10): doi: 10. 1002/ente.202100367. |
78 | NUR K, ROITZHEIM C, FINSTERBUSCH M, et al. Cold sintered LiMn2O4 for high-rate capability electrodes[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5348. |
79 | SUN Q, LI J, HAO C Y, et al. Focusing on the subsequent coulombic efficiencies of SiOx: Initial high-temperature charge after over-capacity prelithiation for high-efficiency SiOx-based full-cell battery[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14284-14292. |
80 | ZACHMAN M J, YANG Z, DU Y, et al. Robust atomic-resolution imaging of lithium in battery materials by center-of-mass scanning transmission electron microscopy[J]. ACS Nano, 2022: doi: 10. 1021/acsnano.1c09374. |
81 | UXA D, SCHMIDT H. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries[J]. Zeitschrift Für Physikalische Chemie, 2021: doi: 10.1515/zpch-2021-3098. |
82 | CAVE E A, OLSON J Z, SCHLENKER C W. Ion-pairing dynamics revealed by kinetically resolved in situ FTIR spectroelectrochemistry during lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48546-48554. |
83 | LUO Y T, BAI Y, MISTRY A, et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation[J]. Nature Materials, 2022, 21(2): 217-227. |
84 | CHEN Y Y, HUANG H Y, LIU L L, et al. Diffusion enhancement to stabilize solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(40): doi: 10.1002/aenm.202101774. |
85 | LIU Y Y, XU X Y, KAPITANOVA O O, et al. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes[J]. Advanced Energy Materials, 2022, 12(9): doi: 10.1002/aenm. 202103589. |
86 | YUE X Y, YAO Y X, ZHANG J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries[J]. Advanced Materials, 2022, 34(15): doi: 10.1002/adma.202110337. |
87 | LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4051-4060. |
88 | TSUKASAKI H, IGARASHI K, WAKUI A, et al. In situ observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems[J]. Microscopy, 2021, 70(6): 519-525. |
89 | JIANG Y, NIU Z Q, OFFER G, et al. Insights into the role of silicon and graphite in the electrochemical performance of silicon/graphite blended electrodes with a multi-material porous electrode model[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5481. |
90 | SHEN Y B, YAO X J, WANG S H, et al. Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58871-58884. |
91 | AZEEZ F, REFAIE A. Integration of semi-empirical and artificial neural network (ANN) for modeling lithium-ion electrolyte systems dynamic viscosity[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4840. |
92 | CUI X L, ZHANG J J, WANG J, et al. Antioxidation mechanism of highly concentrated electrolytes at high voltage[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59580-59590. |
93 | ZHANG B K, ZHONG J J, PAN F, et al. Potential solid-state electrolytes with good balance between ionic conductivity and electrochemical stability: Li5- xM1- xMx'O4 (M = Al and Ga and M' = Si and Ge)[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61296-61304. |
94 | LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Letters, 2022, 22(6): 2461-2469. |
95 | LV L Z, WANG Y, HUANG W B, et al. The effect of cathode type on the electrochemical performance of Si-based full cells[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230855. |
96 | SHI X T, ZHENG T L, XIONG J W, et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57107-57117. |
97 | SHIN W, MANTHIRAM A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022, 61(13): doi: 10.1002/anie.202115909. |
98 | ZHANG X H, CUI Z H, MANTHIRAM A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103611. |
99 | HUO H Y, HUANG K, LUO W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging[J]. ACS Energy Letters, 2022, 7(2): 650-658. |
100 | SUN H M, LIU Q N, CHEN J Z, et al. In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries[J]. ACS Nano, 2021, 15(12): 19070-19079. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[6] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[7] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[8] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[9] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[10] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[11] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[12] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[13] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[14] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
[15] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||