Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2452-2462.doi: 10.19799/j.cnki.2095-4239.2022.0240
Previous Articles Next Articles
Shuang SHI1(), Nawei LYU1, Jingxuan MA1, Kangyong YIN2, Lei SUN2, Ning ZHANG3, Yang JIN1()
Received:
2022-05-06
Revised:
2022-06-06
Online:
2022-08-05
Published:
2022-08-03
Contact:
Yang JIN
E-mail:18537135250@163.com;yangjin@zzu.edu.cn
CLC Number:
Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462.
1 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | 胥彦玲, 李纯, 扆铁梅, 等. 基于专利分析的锂离子电池储能技术发展态势[J]. 储能科学与技术, 2017, 6(2): 323-329. |
XU Y L, LI C, YI T M, et al. Development trend of lithium-ion battery energy storage technology based on patent analysis[J]. Energy Storage Science and Technology, 2017, 6(2): 323-329. | |
4 | 周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350. |
ZHOU F, LIU S, HOU M. Application and development tendency of lithium battery technology in energy storage field[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350. | |
5 | 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. | |
6 | 汪伟伟, 丁楚雄, 高玉仙, 等. 磷酸铁锂及三元电池在不同领域的应用[J]. 电源技术, 2020, 44(9): 1383-1386. |
WANG W W, DING C X, GAO Y X, et al. Application of LFP and NCM batteries in different fields[J]. Chinese Journal of Power Sources, 2020, 44(9): 1383-1386. | |
7 | 高平, 许铤, 王寅. 储能用锂离子电池及其系统国内外标准研究[J]. 储能科学与技术, 2017, 6(2): 270-274. |
GAO P, XU T, WANG Y. Research on the standards of lithium ion battery and its system used in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 270-274. | |
8 | OULD ELY T, KAMZABEK D, CHAKRABORTY D. Batteries safety: Recent progress and current challenges[J]. Frontiers in Energy Research, 2019, 7: 71. |
9 | 吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术, 2019, 8(3): 495-499. |
WU J Y, HUANG Z, GUO P Y. Research progress on fire protection technology of LFP lithium-ion battery used in energy storage power station[J]. Energy Storage Science and Technology, 2019, 8(3): 495-499. | |
10 | 清华大学. 2019年动力电池安全性研究报告[R/OL]. 北京: 2019. [2019-12-10]. http://www.199it.com/archives/929672.html. |
Tsinghua University. 2019 Power battery safety study report[R/OL]. Beijing: 2019. [2019-12-10]. http://www.199it.com/archives/929672.html. | |
11 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
12 | LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523. |
13 | LIAO Z H, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: doi:10.1016/j.jpowsour. 2019.226879. |
14 | 赖铱麟, 杨凯, 刘皓, 等. 锂离子电池安全预警方法综述[J]. 储能科学与技术, 2020, 9(6): 1926-1932. |
LAI Y L, YANG K, LIU H, et al. Lithium-ion battery safety warning methods review[J]. Energy Storage Science and Technology, 2020, 9(6): 1926-1932. | |
15 | RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16. |
16 | 谭泽富, 孙荣利, 杨芮, 等. 电池管理系统发展综述[J]. 重庆理工大学学报(自然科学), 2019, 33(9): 40-45. |
TAN Z F, SUN R L, YANG R, et al. Overview of battery management system[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(9): 40-45. | |
17 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473. |
18 | GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482. |
19 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. |
20 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. |
21 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
22 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. | |
23 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 独立式感烟火灾探测报警器: GB 20517—2006[S]. 北京: 中国标准出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Self-contained smoke alarms: GB 20517—2006[S]. Beijing: Standards Press of China, 2007. | |
24 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
25 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
26 | BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3221-3229. |
27 | LANG J L, LONG Y Z, QU J L, et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode[J]. Energy Storage Materials, 2019, 16: 85-90. |
28 | ZHAO L W, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280. |
29 | 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. |
YAN X D, MA X L, LI W Y, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. | |
30 | GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. |
31 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018. | |
32 | PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89. |
33 | RÖDER P, BABA N, FRIEDRICH K A, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157. |
34 | YANG H, SHEN X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell[J]. Journal of Power Sources, 2007, 167(2): 515-519. |
35 | KAWAMURA T, KIMURA A, EGASHIRA M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2): 260-264. |
36 | WANG Q S, SUN J H, YAO X L, et al. Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 2005, 437(1/2): 12-16. |
37 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
38 | 唐文杰, 姜欣, 刘昊琰, 等. 基于气液逸出物图像识别的锂离子电池火灾早期预警[J/OL]. 高电压技术: 1-12. [2022-05-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GDYJ2022022201P&uniplatform=NZKPT&v=KLS-wUp7 FUktLy1ShGVS9y72018A-tpj3ZlyGfYL5negSohw8UGQRsmwl5h3nI1w. |
TANG W J, JIANG X, LIU H Y, et al. Early warning of lithium-ion battery fire based on image recognition of gas-liquid escape[J/OL]. High Voltage Engineering: 1-12.[2022-05-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GDYJ2022022201P&uniplatform=NZKPT&v=KLS-wUp7FUktLy1ShGVS9y72018A-tpj3ZlyGfYL5negSohw8UGQR smwl5h3nI1w. | |
39 | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. |
40 | YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182: 464-474. |
41 | REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. |
[1] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[2] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[3] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[4] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[5] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[6] | Xingchu CAI, Yiming ZHU, Keshang JIANG, Xufeng XI, Yicao ZHANG, Weishi LIN. Application on perfluoro-2-methyl-3-pentanone in lithium battery premade energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2497-2504. |
[7] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[8] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[9] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[10] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[11] | Laifeng SONG, Wenxin MEI, Zhuangzhuang JIA, Qingsong WANG. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions [J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. |
[12] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[13] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[14] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[15] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||