Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 960-967.doi: 10.19799/j.cnki.2095-4239.2022.0442
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yunjie LI(), Guangyu ZHANG(), Weiwen ZHU, Yuanyuan MIN, Chengfei RAO, Yanfei SUN, Qingqing XU
Received:
2022-08-08
Revised:
2022-09-05
Online:
2023-03-05
Published:
2023-04-14
Contact:
Guangyu ZHANG
E-mail:liyunjie@gotion.com.cn;zhangguangyu@ gotion.com.cn
CLC Number:
Yunjie LI, Guangyu ZHANG, Weiwen ZHU, Yuanyuan MIN, Chengfei RAO, Yanfei SUN, Qingqing XU. The dynamic simulation of pressure relief characteristics of the power battery vent based on choking flow[J]. Energy Storage Science and Technology, 2023, 12(3): 960-967.
1 | 杨荣华. 产业融合背景下的新能源汽车技术发展趋势研究[J]. 时代汽车, 2022(1): 119-120. |
YANG R H. Research on the development trend of new energy vehicle technology under the background of industrial convergence[J]. Auto Time, 2022(1): 119-120. | |
2 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
3 | 欧阳陈志, 梁波, 刘燕平, 等. 锂离子动力电池热安全性研究进展[J]. 电源技术, 2014, 38(2): 382-385. |
OUYANG C Z, LIANG B, LIU Y P, et al. Progress of thermal safety characteristics of high power lithium-ion batteries[J]. Chinese Journal of Power Sources, 2014, 38(2): 382-385. | |
4 | 葛瑞. 汽车动力电池系统防爆阀的选型与理论计算[J]. 上海汽车, 2021(3): 4-6, 13. |
GE R. Selection and theoretical calculation of explosion-proof valve of EV power battery system[J]. Shanghai Auto, 2021(3): 4-6, 13. | |
5 | 蒋南希. 新能源汽车锂电池防爆盖结构设计[J]. 电源技术, 2018, 42(8): 1129-1133. |
JIANG N X. Structure design of explosion proof cap for new energy vehicle[J]. Chinese Journal of Power Sources, 2018, 42(8): 1129-1133. | |
6 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. |
7 | COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307: 56-62. |
8 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
9 | 常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199. |
CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199. | |
10 | 付一民, 周健, 盛军, 等. 基于某动力电池防水透气防爆阀的仿真研究[J]. 汽车实用技术, 2019(1): 1-3. |
FU Y M, ZHOU J, SHENG J, et al. Simulation research on waterproof and ventilation explosion-proof valve based on a power battery[J]. Automobile Applied Technology, 2019(1): 1-3. | |
11 | 杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256. |
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256. | |
12 | 刘红, 沈少祥, 蒋兰芳, 等. 基于Fluent的船用防爆阀降压特性研究[J]. 机电工程, 2018, 35(10): 1053-1057. |
LIU H, SHEN S X, JIANG L F, et al. Pressure-loss characteristics of marine explosion-proof valve based on Fluent[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(10): 1053-1057. | |
13 | 朱飞成, 章军, 王芳. 基于壅塞流的恒负载气动系统的动态仿真[J]. 液压与气动, 2014(9): 123-127. |
ZHU F C, ZHANG J, WANG F. The dynamic simulation of constant loaded pneumatic system based on the choked flow[J]. Chinese Hydraulics & Pneumatics, 2014(9): 123-127. | |
14 | 王玮, 田威. 管道阻塞特征对壅塞流的影响[J]. 液压与气动, 2014(6): 55-58, 62. |
WANG W, TIAN W. Effect of pipe blockage characteristic on chocked flow[J]. Chinese Hydraulics & Pneumatics, 2014(6): 55-58, 62. | |
15 | 董军, 杨俊. 喷管内有摩擦流动的壅塞和临界参数[J]. 工程热物理学报, 2017, 38(12): 2537-2541. |
DONG J, YANG J. Chock and critical parameters of frictional flow in nozzle[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2537-2541. |
[1] | Mai FENG, Nan CHEN, Renjie CHEN. Research progress of low-temperature electrolyte for lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. |
[2] | Shuili YANG, Xiaokang LAI, Tao DING, Zekai WANG, Jizhong CHEN, Jiahui ZHU, Tingting LI. Application and prospect of new energy storage technologies in resilient power systems [J]. Energy Storage Science and Technology, 2023, 12(2): 515-528. |
[3] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[4] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[5] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[6] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[7] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[8] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[9] | Jun WANG, Zhuangzhuang JIA, Peng QIN, Zheng HUANG, Jingyun WU, Wen QI, Qingsong WANG. Simulation of thermal runaway gas diffusion in LiFePO4 battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 185-192. |
[10] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
[11] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[12] | Xinpeng LIU, Heng LIU, Qiang REN. Exploration on the development of conventional and energy-storage hybrid hydropower resources for the mainstream of Manas River in Xinjiang [J]. Energy Storage Science and Technology, 2021, 10(5): 1788-1795. |
[13] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[14] | WU Xiangjiang, HE Feng, CAO Yuliang, AI Xinping. Effect of electrolyte composition on the performance of sulfur cathode based on solid-phase conversion mechanism [J]. Energy Storage Science and Technology, 2020, 9(2): 331-338. |
[15] | CHE Haiying, YU Yan, YANG Xinrong, LIAO Xiaozhen, LI Linsen, DENG Yonghong, MA Zifeng. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates [J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||