Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3423-3438.doi: 10.19799/j.cnki.2095-4239.2022.0602
Previous Articles Next Articles
Hongxiang JI(), Yida WU, Zhou JIN, Mengyu TIAN, Junfeng HAO, Yuanjie ZHAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-10-17
Online:
2022-11-05
Published:
2022-11-09
Contact:
Xuejie HUANG
E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
CLC Number:
Hongxiang JI, Yida WU, Zhou JIN, Mengyu TIAN, Junfeng HAO, Yuanjie ZHAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2022 to Sept. 30, 2022)[J]. Energy Storage Science and Technology, 2022, 11(11): 3423-3438.
1 | JEONG S, YOUNG PARK S, SO B, et al. Reinforcement of binder adhesion for nickel-rich layered oxide in lithium-ion batteries using perfluorinated molecular surface modification[J]. Chemical Engineering Journal, 2022, 448: doi: 10.1016/j.cej.2022.137654. |
2 | FAN T J, KAI W, HARIKA V K, et al. Operating highly stable LiCoO2 cathodes up to 4.6 V by using an effective integration of surface engineering and electrolyte solutions selection[J]. Advanced Functional Materials, 2022, 32(33): doi: 10.1002/adfm.202204972. |
3 | XIN F X, GOEL A, CHEN X B, et al. Electrochemical characterization and microstructure evolution of Ni-rich layered cathode materials by niobium coating/substitution[J]. Chemistry of Materials, 2022, 34(17): 7858-7866. |
4 | WANG L G, LEI X C, LIU T C, et al. Regulation of surface defect chemistry toward stable Ni-rich cathodes[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(19): doi: 10.1002/adma.202200744. |
5 | NI L S, GUO R T, DENG W T, et al. Single-crystalline Ni-rich layered cathodes with super-stable cycling[J]. Chemical Engineering Journal, 2022, 431: doi: 10.1016/j.cej.2021.133731. |
6 | KIM J M, XU Y B, ENGELHARD M H, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17405-17414. |
7 | HUANG W Y, YANG L Y, CHEN Z F, et al. Elastic lattice enabling reversible tetrahedral Li storage sites in a high-capacity manganese oxide cathode[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(30): doi: 10.1012/adma.202202745. |
8 | AHN J, HA Y, SATISH R, et al. Exceptional cycling performance enabled by local structural rearrangements in disordered rocksalt cathodes[J]. Advanced Energy Materials, 2022, 12(27): doi: 10.1002/aenm.202200426. |
9 | PARK G T, NAMKOONG B, KIM S B, et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries[J]. Nature Energy, 2022: 1-9. |
10 | FENG Z J, SONG H, SU W, et al. Improved electrochemical kinetics and interfacial stability of cobalt-free lithium-rich layered oxides via thiourea treatment[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138114. |
11 | JONDERIAN A, JIA S P, YOON G, et al. Accelerated development of high voltage Li-ion cathodes[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202201704. |
12 | REN Y, XIANG L Z, YIN X C, et al. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(16): doi: 10.1002/adfm.202110046. |
13 | ZHOU C Y, GONG X Z, FENG Y K, et al. Constructing an artificial boundary to regulate solid electrolyte interface formation and synergistically enhance stability of nano-Si anodes[J]. Journal of Colloid and Interface Science, 2022, 619: 158-167. |
14 | BIAN C C, FU R S, SHI Z P, et al. Mg2SiO4/Si-coated disproportionated SiO composite anodes with high initial coulombic efficiency for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15337-15345. |
15 | ATTIA E, HASSAN F, LI M, et al. A robust bundled and wrapped structure design of ultrastable silicon anodes for antiaging lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(5): 5540-5550. |
16 | DENG Y L, GAO J, WANG M, et al. Homogenizing the Li-ion flux by multi-element alloying modified for 3D dendrite-free lithium anode[J]. Energy Storage Materials, 2022, 48: 114-122. |
17 | CHEN Z R, LIANG Z T, ZHONG H Y, et al. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2022, 7(8): 2761-2770. |
18 | LUO L L, XIA S X, ZHANG X, et al. In situ construction of efficient interface layer with lithiophilic nanoseeds toward dendrite-free and low N/P ratio Li metal batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(8): doi: 10.1002/advs.202104391. |
19 | SHENG O W, HU H L, LIU T F, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(14): doi: 10.1002/adfm.202111026. |
20 | ZHOU S P, DENG K R, XU Z L, et al. Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries[J]. Chemical Engineering Journal, 2022, 442: doi: 10.1016/j.cej.2022.136083. |
21 | ZHENG Y, YANG N, GAO R, et al. "tree-trunk" design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022: doi: 10.1002/adma.202203417. |
22 | WANG Q Y, XU X Q, HONG B, et al. Molecular engineering of a gel polymer electrolyte via in situ polymerization for high performance lithium metal batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131331. |
23 | LI Z, FU J L, ZHENG S, et al. Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(17): doi: 10.1002/smll.202200891. |
24 | GUO C X, CAO Y F, LI J F, et al. Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119571. |
25 | CHENG Z Z, LU L P, ZHANG S Y, et al. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state[J]. Nano Research, 2022: 1-8. |
26 | FU Y, CHEN Y F, ZHOU L M. Comonomer-tuned gel electrolyte enables ultralong cycle life of solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 40871-40880. |
27 | HUANG Z X, XIE Z H, ZHANG Z P, et al. Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature[J]. Journal of Materials Chemistry A, 2022, 10(36): 18895-18906. |
28 | YANG L X, LUO D, ZHENG Y, et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022, 32(36): doi: 10.1002/adfm.202204778. |
29 | ZHAI Y F, HOU W S, TAO M M, et al. Enabling high-voltage "superconcentrated ionogel-in-ceramic" hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(39): doi: 10.1002/adma.202205560. |
30 | WU Z K, CHEN S Q, YU C, et al. Engineering high conductive Li7P2S8I via Cl-doping for all-solid-state Li-S batteries workable at different operating temperatures[J]. Chemical Engineering Journal, 2022, 442: doi: 10.1016/j.cej.2022.136346. |
31 | WANG G D, DONG P P, LIANG B, et al. An amorphous superionic conductor Li3PS4-x LiBr with high conductivity and good air stability by halogen incorporation[J]. Journal of the American Ceramic Society, 2022, 105(12): 7751-7759. |
32 | CHEN Z, ZHANG H R, XU H T, et al. In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133589. |
33 | CHEN J, GAO Y Y, SHI L, et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability[J]. Nature Communications, 2022, 13: 4868. |
34 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
35 | AN K, TRAN Y H T, KWAK S, et al. Design of fire-resistant liquid electrolyte formulation for safe and long-cycled lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(48): doi: 10.1002/adfm.202106102. |
36 | ZHANG J, SHI J Y, GORDON L W, et al. Performance leap of lithium metal batteries in LiPF6 carbonate electrolyte by a phosphorus pentoxide acid scavenger[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36679-36687. |
37 | LIU G, CAO Z, WANG P, et al. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(26): doi: 10.1002/advs.202201893. |
38 | ZHOU P, XIA Y C, WU Y H, et al. Novel urea-based molecule functioning as a solid electrolyte interphase enabler and LiPF6 decomposition inhibitor for fast-charging lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38921-38930. |
39 | ZHANG L H, MIN F Q, LUO Y, et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107122. |
40 | RINKEL B L D, VIVEK J P, GARCIA-ARAEZ N, et al. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3416-3438. |
41 | LU D, LEI X C, WENG S T, et al. A self-purifying electrolyte enables high energy Li ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3331-3342. |
42 | LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667. |
43 | DAI P P, KONG X B, YANG H Y, et al. Synergistic effect of dual-anion additives promotes the fast dynamics and high-voltage performance of Ni-rich lithium-ion batteries by regulating the electrode/electrolyte interface[J]. ACS Applied Materials & Interfaces, 2022, 14(35): 39927-39938. |
44 | CHUNG G J, TRAN Y H T, HAN J, et al. Novel additives-package to mitigate the failure modes of high-capacity LiNi0.82Co0.11Mn0.07O2 -based lithium-ion battery[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137288. |
45 | CHEN Y Q, HE Q, MO Y, et al. Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811// graphite pouch cell at 60 ℃[J]. Advanced Energy Materials, 2022, 12(33): doi: 10.1002/aenm.202201631. |
46 | LIN J L, YANG Y X, LIN X Y, et al. Insight into the improved performances of Ni-rich/graphite cells by 1, 3, 5-trimethyl-1, 3, 5-tris(3, 3, 3-trifluoropropyl) cyclotrisiloxane as an electrolyte additive[J]. ACS Applied Energy Materials, 2022, 5(9): 11684-11693. |
47 | MOSALLANEJAD B, JAVANBAKHT M, SHARIATINIA Z, et al. Phenyl vinylsulfonate, a novel electrolyte additive to improve electrochemical performance of lithium-ion batteries[J]. Energies, 2022, 15(17): 6205. |
48 | TIAN M Y, BEN L B, YU H L, et al. Designer cathode additive for stable interphases on high-energy anodes[J]. Journal of the American Chemical Society, 2022, 144(33): 15100-15110. |
49 | JIANG S, XU X, YIN J Y, et al. Multifunctional electrolyte additive for Bi-electrode interphase regulation and electrolyte stabilization in Li/LiNi0.8Co0.1Mn0.1O2 batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38758-38768. |
50 | WEN Z Y, WU F, LI L, et al. Electrolyte design enabling stable solid electrolyte interface for high-performance silicon/carbon anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38807-38814. |
51 | LIU G P, GAO J, XIA M, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte Additive-Allyl phenyl sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290. |
52 | XU H J, CAO G Q, SHEN Y L, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes[J]. Energy & Environmental Materials, 2022, 5(3): 852-864. |
53 | SHIN H S, JEONG W, RYU M H, et al. Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133753. |
54 | SHIN D O, KIM H, JUNG S, et al. Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries[J]. Energy Storage Materials, 2022, 49: 481-492. |
55 | SHIMIZU R, CHENG D Y, WEAVER J L, et al. Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5 V[J]. Advanced Energy Materials, 2022, 12(31): doi: 10.1002/aenm.202201119. |
56 | CHENG Z, PAN H, LI F, et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy[J]. Nature Communications, 2022, 13: 125. |
57 | GREGORY G L, GAO H, LIU B Y, et al. Buffering volume change in solid-state battery composite cathodes with CO2-derived block polycarbonate ethers[J]. Journal of the American Chemical Society, 2022, 144(38): 17477-17486. |
58 | KWON T Y, KIM K T, OH D Y, et al. Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure[J]. Energy Storage Materials, 2022, 49: 219-226. |
59 | WU L L, XUE B, WANG H J, et al. Self-densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles[J]. Journal of the American Ceramic Society, 2022, 105(12): 7344-7354. |
60 | LEE J, CHOI S H, IM G, et al. Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(40): doi: 10.1002/adma.202203580. |
61 | ARIBIA A, SASTRE J, CHEN X B, et al. Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5-4.7 V[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm. 202201750. |
62 | SHEN L, ZHAO C, WENG W, et al. In situ-formed LiF-rich multifunctional interfaces toward stable Li10GeP2S12-based all-solid-state lithium batteries[J]. Advanced Materials Interfaces, 2022, 9(24): doi: 10.1002/admi.202200822. |
63 | QIAN S S, XING C, ZHENG M T, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes (adv. energy mater. 15/2022)[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202270062. |
64 | OKUNO R, YAMAMOTO M, KATO A, et al. High cycle stability of nanoporous Si composites in all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(8): doi: 10.1149/1945-7111/ac81f6. |
65 | LEE S, LEE K S, KIM S, et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries[J]. Science Advances, 2022, 8(30): doi: 10.1126/sciadv.abq0153. |
66 | SUN X W, WANG L L, MA J, et al. A bifunctional chemomechanics strategy to suppress electrochemo-mechanical failure of Ni-rich cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17674-17681. |
67 | NAM J S, TO A RAN W, LEE S H, et al. Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries[J]. Energy Storage Materials, 2022, 46: 155-164. |
68 | LIU G X, WAN J, SHI Y, et al. Direct tracking of additive-regulated evolution on the lithium anode in quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202201411. |
69 | LIU Q Y, SUN G W, PAN J L, et al. Metal ion cutting-assisted synthesis of defect-rich MoS2 nanosheets for high-rate and ultrastable Li2S catalytic deposition[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37771-37781. |
70 | CAI D Q, GAO Y T, WANG X Y, et al. Built-in electric field on the Mott-Schottky heterointerface-enabled fast kinetics lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38651-38659. |
71 | LI X T, FU Z H, WANG J, et al. Dilithium phthalocyanine as electrolyte additive for the regulation of ion solvation and transport towards dendrite-free Li metal anodes[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138112. |
72 | ABRAHAM A M, THIEL K, SHAKOURI M, et al. Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(34): doi: 10.1002/aenm.202201494. |
73 | WANG Z H, HU J P, LIU J, et al. Polysulfide regulation by hypervalent iodine compounds for durable and sustainable lithium-sulfur battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(15): doi: 10.1002/smll.202106716. |
74 | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(16): doi: 10.1002/adma.202109658. |
75 | LI Z H, WU G, YANG Y J, et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(29): doi: 10.1002/aenm.202201197. |
76 | LU L L, ZHU Z X, MA T, et al. Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6Sn5 network[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(32): doi: 10.1002/adma. 202202688. |
77 | LI R H, O'KANE S, MARINESCU M, et al. Modelling solvent consumption from SEI layer growth in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(6): doi: 10.1149/1945-7111/ac6f84. |
78 | ABE M, KANEKO F, ISHIGURO N, et al. Visualization of sulfur chemical state of cathode active materials for lithium-sulfur batteries by tender X-ray spectroscopic ptychography[J]. The Journal of Physical Chemistry C, 2022, 126(33): 14047-14057. |
79 | CAO D Q, TAN C, CHEN Y H. Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries[J]. Nature Communications, 2022, 13: 4908. |
80 | HAN B, LI X Y, WANG Q, et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte[J]. Advanced Materials, 2022, 34(13): doi: 10.1002/adma. 202108252. |
81 | ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nature Communications, 2022, 13: 1153. |
82 | RIGAUD S, MARTINEZ A C, LOMBARD T, et al. Mass spectrometry analysis of NMC622/graphite Li-ion cells electrolyte degradation products after storage and cycling[J]. Journal of the Electrochemical Society, 2022, 169(1): doi: 10.1149/1945-7111/ac44bb. |
83 | HUANG L, LU T, XU G J, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries[J]. Joule, 2022, 6(4): 906-922. |
84 | MELIN T, LUNDSTRÖM R, BERG E J. Revisiting the ethylene carbonate-propylene carbonate mystery with operando characterization[J]. Advanced Materials Interfaces, 2022, 9(8): doi: 10.1002/admi.202101258. |
85 | MCSHANE E J, BERGSTROM H K, WEDDLE P J, et al. Quantifying graphite solid-electrolyte interphase chemistry and its impact on fast charging[J]. ACS Energy Letters, 2022, 7(8): 2734-2744. |
86 | FAN X Y, CHEN P, YIN X, et al. One stone for multiple birds: A versatile cross-linked poly(dimethyl siloxane) binder boosts cycling life and rate capability of an NCM 523 cathode at 4.6 V[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16245-16257. |
87 | ZHAO J K, WEI D N, WANG J J, et al. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 625: 373-382. |
88 | ZHAO X Y, TIAN Y S, LUN Z Y, et al. Design principles for zero-strain Li-ion cathodes[J]. Joule, 2022, 6(7): 1654-1671. |
89 | YU C C, ZHOU H T, WU J C, et al. Ion-permselective polyphenylene sulfide-based solid-state separator for high voltage LiNi0.5Mn1.5O4 battery[J]. Journal of the Electrochemical Society, 2022, 169(7): doi: 10.1149/1945-7111/ac8244. |
90 | REYNOLDS C D, HARE S D, SLATER P R, et al. Rheology and structure of lithium-ion battery electrode slurries[J]. Energy Technology, 2022, 10(10): doi: 10.1002/ente.202200545. |
91 | HAGEMEISTER J, STOCK S, LINKE M, et al. Lean cell finalization in lithium-ion battery production: Determining the required electrolyte wetting degree to begin the formation[J]. Energy Technology, 2022: doi: 10.1002/ente.202200686. |
92 | QIN N, JIN L M, LU Y Y, et al. Over-potential tailored thin and dense lithium carbonate growth in solid electrolyte interphase for advanced lithium ion batteries[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103402. |
93 | ZHANG Y X, KIM C S, SONG H W, et al. Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition[J]. Energy Storage Materials, 2022, 48: 1-11. |
94 | DONG Q, WANG T, GAN R Y, et al. Separators based on the dynamic tip-occupying electrostatic shield effect for dendrite-free lithium-metal batteries[J]. Advanced Sustainable Systems, 2022, 6(3): doi: 10.1002/adsu.202100386. |
95 | ISAAC J A, DEVAUX D, BOUCHET R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity[J]. Nature Materials, 2022: doi: 10.1038/s41563-022-01343-w. |
96 | CHO S, KIM D Y, LEE J I, et al. Highly reversible lithium host materials for high-energy-density anode-free lithium metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202208629. |
97 | BIELEFELD A, WEBER D A, RUEß R, et al. Influence of lithium ion kinetics, particle morphology and voids on the electrochemical performance of composite cathodes for all-solid-state batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac50df. |
98 | CHEN S M, WANG Z J, WANG L, et al. Constructing a robust solid-electrolyte interphase layer via chemical prelithiation for high-performance SiOx anode[J]. Advanced Energy and Sustainability Research, 2022, 3(10): doi: 10.1002/aesr. 202200083. |
99 | LI X H, WANG Q, GUO H Y, et al. Understanding the onset of surface degradation in LiNiO2 cathodes[J]. ACS Applied Energy Materials, 2022, 5(5): 5730-5741. |
100 | SUN S Y, YAO N, JIN C B, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angewandte Chemie International Edition, 2022, 61(42): doi: 10.1002/anie.202208743. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[3] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[4] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[5] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[6] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[7] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[8] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[9] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[10] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[11] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[12] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[13] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[14] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[15] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||