Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3439-3446.doi: 10.19799/j.cnki.2095-4239.2022.0329
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhaowu ZHU1,2(), Xukun ZHANG1,2,3, Hui SU1,2, Jian ZHANG1,2, Lina WANG1,2()
Received:
2022-06-15
Revised:
2022-07-04
Online:
2022-11-05
Published:
2022-11-09
Contact:
Lina WANG
E-mail:zhwzhu@ipe.ac.cn;linawang@ipe.ac.cn
CLC Number:
Zhaowu ZHU, Xukun ZHANG, Hui SU, Jian ZHANG, Lina WANG. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446.
1 | SKYLLAS-KAZACOS M, RYCHICK M, ROBINS R. All-vanadium redox battery: US4786567[P]. 1988-11-22. |
2 | SKYLLAS-KAZACOS M, MENICTAS C. Vanadium redox flow batteries[M]//Encyclopedia of Energy Storage. Amsterdam: Elsevier, 2022: 407-422. |
3 | 宋子琛, 张宝锋, 童博, 等. 液流电池商业化进展及其在电力系统的应用前景[J]. 热力发电, 2022, 51(3): 9-20. |
SONG Z C, ZHANG B F, TONG B, et al. Commercialization progress of flow battery and its application prospects in electric power system[J]. Thermal Power Generation, 2022, 51(3): 9-20. | |
4 | 贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(5): 467-475. |
JIA C K, WANG Q. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5): 467-475. | |
5 | 高能量密度有机液流电池研究获突破[J]. 机械制造, 2019, 57(3): 78. |
6 | 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1): 55-62. |
PENG J Y, ZU C X, LI H. Fundamental scientific aspects of lithium batteries(Ⅰ)—Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1): 55-62. | |
7 | 刘明义, 韩临武, 郑建涛, 等. 全钒氧化还原液流电池研究进展[J]. 电源技术, 2016, 40(6): 1330-1333. |
LIU M Y, HAN L W, ZHENG J T, et al. Research progress of all-vanadium redox flow battery[J]. Chinese Journal of Power Sources, 2016, 40(6): 1330-1333. | |
8 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
9 | SKYLLAS-KAZACOS M, CAO L Y, KAZACOS M, et al. Vanadium electrolyte studies for the vanadium redox battery—A review[J]. ChemSusChem, 2016, 9(13): 1521-1543. |
10 | CAO L Y, SKYLLAS-KAZACOS M, MENICTAS C, et al. A review of electrolyte additives and impurities in vanadium redox flow batteries[J]. Journal of Energy Chemistry, 2018, 27(5): 1269-1291. |
11 | CHOI C, KIM S, KIM R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274. |
12 | 王刚, 陈金伟, 汪雪芹, 等. 全钒氧化还原液流电池电解液[J]. 化学进展, 2013, 25(7): 1102-1112. |
WANG G, CHEN J W, WANG X Q, et al. Electrolyte for all-vanadium redox flow battery[J]. Progress in Chemistry, 2013, 25(7): 1102-1112. | |
13 | SKYLLAS-KAZACOS M, GROSSMITH F. Efficient vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1987, 134(12): 2950-2953. |
14 | RYCHCIK M, SKYLLAS-KAZACOS M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources, 1988, 22(1): 59-67. |
15 | SKYLLAS-KAZACOS M, KAZACOS M, MCDERMOTT R. Vanadium Compound Dissolution Processes: AU2814289[P]. 1989-07-05. |
16 | CHENG M. Electrolyte optimization and studies for the vanadium redox flow battery[D]. Australia: University of New South Wales, 1991. |
17 | CARVALHO W M Jr, CASSAYRE L, QUARANTA D, et al. Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 61: 436-445. |
18 | RAHMAN F, SKYLLAS-KAZACOS M. Vanadium redox battery: Positive half-cell electrolyte studies[J]. Journal of Power Sources, 2009, 189(2): 1212-1219. |
19 | MURUGESAN V, NIE Z M, ZHANG X, et al. Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry[J]. Cell Reports Physical Science, 2021, 2(2): doi: 10.1016/j.xcrp.2021.100323. |
20 | HAGE R E, CHAUVET F, BISCANS B, et al. Kinetic study of the dissolution of vanadyl sulfate and vanadium pentoxide in sulfuric acid aqueous solution[J]. Chemical Engineering Science, 2019, 199: 123-136. |
21 | RAHMAN F. Stability and properties of supersaturated vanadium electrolytes, for high energy density vanadium redox battery[D]. Australia: University of New South Wales, 1998. |
22 | KAUSAR N, HOWE R, SKYLLAS-KAZACOS M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes[J]. Journal of Applied Electrochemistry, 2001, 31: 1327-1332. |
23 | RAHMAN F, SKYLLAS-KAZACOS M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions[J]. Journal of Power Sources, 1998, 72(2): 105-110. |
24 | NGAMSAI K, ARPORNWICHANOP A. Study on mechanism and kinetic of air oxidation of V(II) in electrolyte reservoir of a vanadium redox flow battery[J]. Energy Procedia, 2014, 61: 1642-1645. |
25 | ZHAO Y, LIU L, QIU X P, et al. Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries[J]. Electrochimica Acta, 2019, 303: 21-31. |
26 | 赵建新, 武增华, 席靖宇, 等. 钒电池负极电解液V2(SO4)3溶解性规律[J]. 无机材料学报, 2012, 27(5): 469-474. |
ZHAO J X, WU Z H, XI J Y, et al. Solubility rules of negative electrolyte V2(SO4)3 of vanadium redox flow battery[J]. Journal of Inorganic Materials, 2012, 27(5): 469-474. | |
27 | XIAO S B, YU L H, WU L T, et al. Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research[J]. Electrochimica Acta, 2016, 187: 525-534. |
28 | LIU Y B, YU L H, LIU L, et al. Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range[J]. Applied Energy, 2021, 301: doi: 10.1016/j.apenergy.2021.117454. |
29 | MOUSA A, SKYLLAS-KAZACOS M. Kinetics of VIII and VII sulfate precipitation processes in negative half-cell electrolyte of the vanadium redox flow battery[J]. ChemElectroChem, 2017, 4(1): 130-142. |
30 | ROE S, MENICTAS C, SKYLLAS-KAZACOS M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte[J]. Journal of the Electrochemical Society, 2015, 163(1): doi: 10.1149/2.0041601jes. |
31 | WANG G, ZHANG J C, ZHANG J, et al. Effect of different additives with-NH2 or-NH4 + functional groups on V(V) electrolytes for a vanadium redox flow battery[J]. Journal of Electroanalytical Chemistry, 2016, 768: 62-71. |
32 | RAHMAN F, SKYLLAS-KAZACOS M. Evaluation of additive formulations to inhibit precipitation of positive electrolyte in vanadium battery[J]. Journal of Power Sources, 2017, 340: 139-149. |
33 | LI L Y, ZHANG J L, MURUGESAN V, et al. Vanadium redox flow battery: Stability of vanadium (V) electrolyte solutions[J]. ECS Meeting Abstracts, 2010, (10): 677. |
34 | 高波. 全钒液流电池高性能稳定电解液的研究[D]. 兰州: 兰州理工大学, 2013. |
GAO B. The research of high-performance stability electrolyte about VRB[D]. Lanzhou: Lanzhou University of Technology, 2013. | |
35 | 朱朋朋. 杂质离子对全钒液流电池电解液稳定性及电化学性能的影响[D]. 沈阳: 沈阳理工大学, 2014. |
ZHU P P. Influence of impurity ions on the electrolyte stability and electrochemical performance of vanadium redox flow battery[D]. Shenyang: Shenyang Ligong University, 2014. | |
36 | DING M Q, LIU T, ZHANG Y M. Stability and electrochemical performance analysis of an electrolyte with Na+ impurity for a vanadium redox flow battery in energy storage applications[J]. Energy & Fuels, 2020, 34(5): 6430-6438. |
37 | 张忠裕, 赵焕, 刘磊, 等. Al元素对钒电池电解液电化学及电池性能影响研究[J]. 钢铁钒钛, 2020, 41(5): 51-57. |
ZHANG Z Y, ZHAO H, LIU L, et al. Influence of Al on electrochemical performances of electrolyte and battery of vanadium redox battery[J]. Iron Steel Vanadium Titanium, 2020, 41(5): 51-57. | |
38 | LI Z H, LIN Y Q, WAN L, et al. Stable positive electrolyte containing high-concentration Fe2(SO4)3 for vanadium flow battery at 50 ℃[J]. Electrochimica Acta, 2019, 309: 148-156. |
39 | KIM S, VIJAYAKUMAR M, WANG W, et al. Chloride supporting electrolytes for all-vanadium redox flow batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(40): 18186-18193. |
40 | ZHANG Z H, WEI L, WU M C, et al. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries[J]. Applied Energy, 2021, 289: doi: 10.1016/j.apenergy.2021.116690. |
41 | VIJAYAKUMAR M, LI L Y, NIE Z M, et al. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(29): 10233-10242. |
42 | KIM S, THOMSEN E, XIA G G, et al. 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes[J]. Journal of Power Sources, 2013, 237: 300-309. |
43 | YANG Y D, ZHANG Y M, LIU T, et al. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte[J]. Journal of Power Sources, 2019, 415: 62-68. |
44 | 吴波, 周德璧. 应用于氧化还原电池正极的VO(CH3SO3)2电解液[J]. 应用化工, 2015, 44(2): 298-302. |
WU B, ZHOU D B. VO(CH3SO3)2 anolyte used in redox battery[J]. Applied Chemical Industry, 2015, 44(2): 298-302. | |
45 | KIM G, KIM Y, YIM T, et al. Effects of methanesulfonic acid on electrolyte for vanadium redox flow batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 326-333. |
46 | NIKIFORIDIS G, BELHCEN A, ANOUTI M. A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 57: 238-246. |
47 | KIM D, JEON J. A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries[J]. Journal of Electroanalytical Chemistry, 2017, 801: 92-97. |
48 | LIU Q H, SLEIGHTHOLME A E S, SHINKLE A A, et al. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315. |
49 | SHINKLE A A, POMAVILLE T J, SLEIGHTHOLME A E S, et al. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries[J]. Journal of Power Sources, 2014, 248: 1299-1305. |
50 | ABEROUMAND S, WOODFIELD P, SHABANI B, et al. Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach[J]. Physics Reports, 2020, 881: 1-49. |
51 | TAYLOR R, COULOMBE S, OTANICAR T, et al. Small particles, big impacts: A review of the diverse applications of nanofluids[J]. Journal of Applied Physics, 2013, 113(1): doi: 10.1063/1.4754271. |
52 | LOBATO J, OVIEDO J, CAÑIZARES P, et al. Impact of carbonaceous particles concentration in a nanofluidic electrolyte for vanadium redox flow batteries[J]. Carbon, 2020, 156: 287-298. |
[1] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[2] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[3] | Zhizhang YUAN, Zonghao LIU, Xianfeng LI. Research progress of flow battery technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. |
[4] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[5] | Xiangjun LI, Yibiao GUAN, Juan HU, Xiaokang LAI. Review of energy storage application in China from 2012 to 2022 [J]. Energy Storage Science and Technology, 2022, 11(9): 2702-2712. |
[6] | Jinzhi WANG, Xiaolei HAN, Chaofeng XU, Jingwen ZHAO, Yue TANG, Guanglei CUI. Research progress of sodium energy storage batteries using oxide solid-state electrolytes [J]. Energy Storage Science and Technology, 2022, 11(9): 2834-2846. |
[7] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[8] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[9] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[10] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[11] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[12] | Congjia ZHANG, Minda SHI, Chen XU, Zhenyu HUANG, Song CI. Intrinsic safety mechanism and case analysis of energy storage systems based on dynamically reconfigurable battery network [J]. Energy Storage Science and Technology, 2022, 11(8): 2442-2451. |
[13] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[14] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[15] | Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||