Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3447-3454.doi: 10.19799/j.cnki.2095-4239.2022.0340
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Xiaofei WANG(
), Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI(
), Zhendong WANG
												  
						
						
						
					
				
Received:2022-06-20
															
							
																	Revised:2022-07-25
															
							
															
							
																	Online:2022-11-05
															
							
																	Published:2022-11-09
															
						Contact:
								Jun LI   
																	E-mail:wangxf.sshy@sinopec.com;lijun.sshy@sinopec.com
																					CLC Number:
Xiaofei WANG, Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI, Zhendong WANG. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite[J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454.
| 1 | LI Y J, GAO T T, NI D Y, et al. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202107638. | 
| 2 | TU S B, CHEN X, ZHAO X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(45): doi: 10.1002/adma.201804581. | 
| 3 | HOU L P, ZHANG X Q, YAO N, et al. An encapsulating lithium-polysulfide electrolyte for practical lithium-sulfur batteries[J]. Chem, 2022, 8(4): 1083-1098. | 
| 4 | SUN M L, WANG X F, WANG J, et al. Assessment on the self-discharge behavior of lithium-sulfur batteries with LiNO3-possessing electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35175-35183. | 
| 5 | WANG X F, QIAN Y M, WANG L N, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Advanced Functional Materials, 2019, 29(39): doi: 10.1002/adfm. 201902929. | 
| 6 | WANG J, FU C M, WANG X F, et al. Three-dimensional hierarchical porous TiO2/graphene aerogels as promising anchoring materials for lithium-sulfur batteries[J]. Electrochimica Acta, 2018, 292: 568-574. | 
| 7 | LI H L, WANG X F, QI C, et al. Self-assembly of MoO3-decorated carbon nanofiber interlayers for high-performance lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(4): 2157-2163. | 
| 8 | 黄佳琦, 孙滢智, 王云飞, 等. 锂硫电池先进功能隔膜的研究进展[J]. 化学学报, 2017, 75(2): 173-188. | 
| HUANG J Q, SUN Y Z, WANG Y F, et al. Review on advanced functional separators for lithium-sulfur batteries[J]. Acta Chimica Sinica, 2017, 75(2): 173-188. | |
| 9 | TONG Z M, HUANG L, LEI W, et al. Carbon-containing electrospun nanofibers for lithium-sulfur battery: Current status and future directions[J]. Journal of Energy Chemistry, 2021, 54: 254-273. | 
| 10 | HUANG J Q, ZHUANG T Z, ZHANG Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano, 2015, 9(3): 3002-3011. | 
| 11 | TONG Z M, HUANG L, LIU H P, et al. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry[J]. Advanced Functional Materials, 2021, 31(11): doi: 10.1002/adfm. 202010455. | 
| 12 | LI Y P, DA LEI, JIANG T Y, et al. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.131798. | 
| 13 | LEI D, SHANG W Z, ZHANG X, et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries[J]. ACS Nano, 2021, 15(12): 20478-20488. | 
| 14 | ZHOU M J, LI Y Y, LEI T Y, et al. Ion-inserted metal-organic frameworks accelerate the mass transfer kinetics in lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(44): doi: 10.1002/smll.202104367. | 
| 15 | QI C, XU L, WANG J, et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12968-12975. | 
| 16 | BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094. | 
| 17 | LI Y, YU J H. New stories of zeolite structures: Their descriptions, determinations, predictions, and evaluations[J]. Chemical Reviews, 2014, 114(14): 7268-7316. | 
| 18 | MOLINER M, MARTÍNEZ C, CORMA A. Multipore zeolites: Synthesis and catalytic applications[J]. Angewandte Chemie (International Ed in English), 2015, 54(12): 3560-3579. | 
| 19 | LI Y, YU J H. Emerging applications of zeolites in catalysis, separation and host-guest assembly[J]. Nature Reviews Materials, 2021, 6(12): 1156-1174. | 
| 20 | MSAYIB K J, BOOK D, BUDD P M, et al. Nitrogen and hydrogen adsorption by an organic microporous crystal[J]. Angewandte Chemie (International Ed in English), 2009, 48(18): 3273-3277. | 
| 21 | ZUO Y Z, ZHU Y J, WANG Q, et al. Promoting polysulfide conversion by catalytic separator with LiNiPO4 and rGO hybrids for high performance Li-S batteries[J]. Journal of Materials Chemistry A, 2020, 8(38): 20111-20121. | 
| 22 | WANG Y, ZHU L F, WANG J X, et al. Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li-S batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133792. | 
| 23 | ZHU X B, OUYANG Y, CHEN J W, et al. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3253-3263. | 
| 24 | CHENG H, LIU H Y, JIN H, et al. Suppression of polysulfide shuttling with a separator modified using spontaneously polarized bismuth ferrite for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(32): 16429-16436. | 
| [1] | Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824. | 
| [2] | Xiaohua DENG, Zhu JANG, Chao CHEN, Dai DANG. Recent advances in zeolitic imidazolium-based metal-organic frameworks (ZIFs) and their derivatives as efficient cathode catalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. | 
| [3] | Kang MA, Zhihao GAO, Lin LUO, Xin SONG, Zuoqiang DAI, Tian HE, Jianmin ZHANG. Research progress on lithium-sulfur battery separators for different strategies to inhibit the “shuttle effect” [J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533. | 
| [4] | Yonggang LOU, Dayong WU, Boran CAI, Weihua LIANG, Luye YANG, Lei HE, Jianhua CAO. Study on preparation and performance of poly(m-phenylene isophthalamide)/solid-state ionic conductor composite membrane [J]. Energy Storage Science and Technology, 2022, 11(10): 3112-3122. | 
| [5] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. | 
| [6] | Youqiang LINGHU, Dehou XU, Xiuyan YUE, Xuezhi ZHOU, Yujie XU, Yong SHENG, Zhitao ZUO, Haisheng CHEN. Study on characteristics of the discharge process for zeolite-liquid water adsorption heat storage system [J]. Energy Storage Science and Technology, 2021, 10(3): 1103-1108. | 
| [7] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. | 
| [8] | Dezheng MA, Peichao LI, Hengyun ZHANG. Fluid-structure coupling effect of lithium-ion battery separator under compression [J]. Energy Storage Science and Technology, 2021, 10(2): 483-490. | 
| [9] | Jiayi SHI, Yingmei YAO, Jiaqi YAN, Chaoqin SUN, Fenglin HUANG. Effect of ceramic coating SiO2/PP/AlF3 separator prepared by magnetron sputtering on battery performance [J]. Energy Storage Science and Technology, 2021, 10(1): 229-236. | 
| [10] | Xiaoqing YAN, Zhiyu HU, Fengquan LIU, Lin LI, Chuanming GU, Xiying DAI, Yu XIAO, Zhaoliang XING, Jianjun ZHOU. The origin and elimination of separator wrinkles in lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 156-162. | 
| [11] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. | 
| [12] | Yun LU, Jianing LIANG, Yong ZHU, Zhengrong LI, Yezhou HU, Ke CHEN, Deli WANG. Recent progress in organics derived cathode materials for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1454-1466. | 
| [13] | CHEN Li, WANG Yanjie, TAN Jing. Review on non-woven fabric-based separator for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(3): 784-790. | 
| [14] | WU Mingxia, YANG Chongyang, ZHANG Qinglin, CHEN Si, AN Zhongxun, ZHOU Yirong. Performance of ceramic composite separators in lithium nickel cobalt manganese oxide/graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(4): 725-731. | 
| [15] | GAO Lei, CHENG Guangyu, GU Honghui, WANG Ke. Influence of ceramic separator on the LiNi0.8Co0.15Al0.05O2 high power Li-ion battery performance [J]. Energy Storage Science and Technology, 2019, 8(2): 297-303. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||