Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3112-3122.doi: 10.19799/j.cnki.2095-4239.2022.0067
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yonggang LOU1,2(), Dayong WU1, Boran CAI1,2, Weihua LIANG1, Luye YANG1,2, Lei HE1,2, Jianhua CAO1()
Received:
2022-02-15
Revised:
2022-03-02
Online:
2022-10-05
Published:
2022-10-10
Contact:
Jianhua CAO
E-mail:louyonggang18@mails.ucas.ac.cn;caojh@mail.ipc.ac.cn
CLC Number:
Yonggang LOU, Dayong WU, Boran CAI, Weihua LIANG, Luye YANG, Lei HE, Jianhua CAO. Study on preparation and performance of poly(m-phenylene isophthalamide)/solid-state ionic conductor composite membrane[J]. Energy Storage Science and Technology, 2022, 11(10): 3112-3122.
Fig. 1
The surface SEM images of membranes (a) PMIA, (b) PMIA-LATP, (c) PMIA-PEO, (d) PMIA-LATP-PEO; (e) The cross-section SEM image of PMIA-LATP-PEO membrane; The EDS mapping of (f) P, (g) Ti in the cross-section of PMIA-LATP-PEO membrane; (h) The SEM image of LATP powder; (i) The XRD pattern of LATP powder, PMIA-LATP and PMIA-LATP-PEO membranes; (j) The particle size distribution diagram of LATP particle; (k) The diagram of pore size distribution of membranes"
Fig. 3
(a) The Nyquist plots of four membranes at 25 ℃; (b) Arrhenius plots of membranes as a function of different temperatures; (c) Current variation with time during polarization of the Li||PMIA-LATP-PEO||Li battery at a potential step of 10 mV at room temperature (in inset: Nyquist profiles corresponding to the EIS measurement performed at the initial and the steady state condition) The chronoamperometric profile of Li||separator||Li cell, insets measure of AC impedance of symmetric cell before and after the DC polarization measurement; (d) The LSV curves of the membranes"
Fig. 4
(a) Cycling performance of LiFePO4||Li cells with different membranes at 0.2 C; (b) Rate performance of LiFePO4||Li cells with membranes; (c) Variation in the AC impedance spectra of cells with PMIA and PMIA-LATP-PEO membrane after 3 cycles and after the 100 cycles at 0.2 C; (d) The AC impedance spectra of different cells after 100 cycles at 0.2 C"
1 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
2 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. | |
3 | LI T, LIU H, SHI P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458. |
4 | LIU H, PENG D C, XU T Y, et al. Porous conductive interlayer for dendrite-free lithium metal battery[J]. Journal of Energy Chemistry, 2021, 53: 412-418. |
5 | COSTA C M, LEE Y H, KIM J H, et al. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes[J]. Energy Storage Materials, 2019, 22: 346-375. |
6 | CAI B R, CAO J H, LIANG W H, et al. Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 5293-5303. |
7 | LIANG T, CAO J H, LIANG W H, et al. Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance[J]. RSC Advances, 2019, 9(70): 41151-41160. |
8 | HE L, CAO J H, LIANG T, et al. Effect of monomer structure on properties of polyimide as LIB separator and its mechanism study[J]. Electrochimica Acta, 2020, 337: doi: 10.1016/j.electacta.2020.135838. |
9 | NUNES-PEREIRA J, COSTA C M, LANCEROS-MÉNDEZ S. Polymer composites and blends for battery separators: State of the art, challenges and future trends[J]. Journal of Power Sources, 2015, 281: 378-398. |
10 | ZHANG H, ZHANG Y, XU T G, et al. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries[J]. Journal of Power Sources, 2016, 329: 8-16. |
11 | LI C, HUANG Y, CHEN C, et al. A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries[J]. Journal of Colloid and Interface Science, 2022, 608: 313-321. |
12 | YANG L Y, CAO J H, CAI B R, et al. Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries[J]. Electrochimica Acta, 2021, 382: doi: 10.1016/j.electacta.2021.138346. |
13 | LIN C E, WANG J, ZHOU M Y, et al. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes[J]. Journal of Membrane Science, 2016, 518: 72-78. |
14 | ZHANG H N, XIE Y X, SONG Y, et al. Preparation of high-temperature resistant poly (m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: doi: 10.1016/j.colsurfa.2021.126831. |
15 | LI Y. A sandwich-structure composite membrane as separator with high wettability and thermal properties for advanced lithium-ion batteries[J]. International Journal of Electrochemical Science, 2019: 7088-7103. |
16 | HU S Y, LIN S D, TU Y Y, et al. Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3513-3526. |
17 | ZHAI Y Y, WANG N, MAO X, et al. Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries[J]. J Mater Chem A, 2014, 2(35): 14511-14518. |
18 | WANG L Y, DENG N P, JU J G, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance[J]. Electrochimica Acta, 2019, 300: 263-273. |
19 | TUNG S O, HO S, YANG M, et al. A dendrite-suppressing composite ion conductor from aramid nanofibres[J]. Nature Communications, 2015, 6: 6152. |
20 | SHENG L, LI Z L, HSUEH C H, et al. Suppression of lithium dendrite by aramid nanofibrous aerogel separator[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230608. |
21 | KANG W M, DENG N P, MA X M, et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery[J]. Electrochimica Acta, 2016, 216: 276-286. |
22 | ZHAO H J, DENG N P, YAN J, et al. Effect of octaphenyl polyhedral oligomeric silsesquioxane on the electrospun poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance[J]. Chemical Engineering Journal, 2019, 356: 11-21. |
23 | LI J L, TIAN W T, YAN H C, et al. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery[J]. Journal of Applied Polymer Science, 2016, 133(30): 43623. |
24 | ZHU C Q, ZHANG J X, XU J, et al. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery[J]. Journal of Membrane Science, 2019, 588: doi: 10.1016/j.memsci.2019.117169. |
25 | DONG J M, ZHANG Y F, WANG J Y, et al. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. Journal of Membrane Science, 2018, 568: 22-29. |
26 | MIAO L, WU Y, HU J W, et al. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process[J]. Journal of Membrane Science, 2019, 578: 16-26. |
27 | LI Y H, LIN Q F, CHEN Z, et al. Phase separation-induced hierarchical porous PVDF/PMIA blended separator with high wettability and thermal stability for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(4): 040510. |
28 | LIU L H, MO J S, LI J R, et al. Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 48: 334-343. |
29 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162. |
30 | KEY B, SCHROEDER D J, INGRAM B J, et al. Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries[J]. Chemistry of Materials, 2012, 24(2): 287-293. |
31 | SIYAL S H, LI M J, LI H, et al. Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs)[J]. Applied Surface Science, 2019, 494: 1119-1126. |
32 | YAO L R, LEE C, KIM J. Fabrication of electrospun meta-aramid nanofibers in different solvent systems[J]. Fibers and Polymers, 2010, 11(7): 1032-1040. |
33 | ALLOIN F, D'APREA A, KISSI N E, et al. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites[J]. Electrochimica Acta, 2010, 55(18): 5186-5194. |
34 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
35 | XU J L, YUAN L, LIANG G Z, et al. Achieving superiorly high heat-dimensional stability, high strength, and good electrochemical performance for electrospun separators in power lithium-ion battery through building unique condensed structure based on polyimide and poly (m-phenylene isophthalamide)[J]. Journal of Applied Polymer Science, 2021, 138(42): 51233. |
36 | WATANABE T, INAFUNE Y, TANAKA M, et al. Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework[J]. Journal of Power Sources, 2019, 423: 255-262. |
37 | LI H Y, LIU W, YANG X D, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127254. |
38 | PAN F S, QIAO L N, YUAN B, et al. Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries[J]. Ionics, 2020, 26(11): 5471-5480. |
[1] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||