Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3123-3132.doi: 10.19799/j.cnki.2095-4239.2022.0229
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2022-04-28
Revised:
2022-06-13
Online:
2022-10-05
Published:
2022-10-10
Contact:
Zhigao SUN
E-mail:2469733974@qq.com;szg.yzu@163.com
CLC Number:
Yanghui CHANG, Zhigao SUN. Preparation and properties of pentadecane microcapsule latent heat functional fluid[J]. Energy Storage Science and Technology, 2022, 11(10): 3123-3132.
Table 2
Imformations of Experimental instrument"
仪器名称 | 型号 | 性能参数 | 厂家 |
---|---|---|---|
电子天平 | BSA224S | 0~220 g,±0.01 mg | 赛多利斯有限公司 |
数控超声波清洗器 | KQ-100DE | 功率100 W | 昆山市超声仪器有限公司 |
电动搅拌器 | JJ-1 | 0~2000 r/min | 常州市西城新瑞仪器厂 |
循环水真空泵 | SHZ-D(Ⅲ) ABS | -0.1~0 MPa | 上海力辰邦西仪器有限公司 |
扫描电子显微镜(能谱) | Quanta FEG 250 | 放大倍数:14×~1 000 000× | 美国FEI公司 |
鼓风干燥箱 | DHG-9070A | RT+10~100 ℃ | 上海精宏实验设备有限公司 |
台式酸度计 | pHS-3C | 精度±0.05 | 上海仪电科学仪器有限公司 |
均质乳化机 | XFJ300-S | 100~20000 r/min | 上海标本模型厂 |
差热热重联用仪 | SDT2960 | 精度±0.001 ℃ | 美国TA公司 |
差示扫描量热仪 | DSC2500 | 精度±0.05 ℃ | 美国TA公司 |
激光粒度仪 | Mastersizer 3000 | 测试范围0.01~3 000 μm | 英国马尔文仪器有限公司 |
旋转黏度计 | NDJ-79 | 1~1×106 mPa·s | 上海精密仪器仪表有限公司 |
导热系数测定仪 | DRE-Ⅲ | 0.001~100 W/(m·K) | 湘潭湘仪仪器有限公司 |
低温恒温水槽 | THD-2015 | 温控范围-20~99 ℃ | 宁波天恒仪器厂 |
1 | 陈大衡, 陈钢, 洪芳军, 等. 纳米胶囊潜热型功能流体制备及强化沸腾换热的实验研究[J]. 低温工程, 2017(3): 7-12, 54. |
CHEN D H, CHEN G, HONG F J, et al. Preparation and boiling heat transfer enhancement experimental research of nanocapsule latent functionally fluid[J]. Cryogenics, 2017(3): 7-12, 54. | |
2 | 于云雁, 赵树兴, 甄子亚, 等. 潜热型功能流体太阳能供暖集热系统集热效果实验研究[J]. 太阳能学报, 2021, 42(10): 135-139. |
YU Y Y, ZHAO S X, ZHEN Z Y, et al. Experimental research on the efficiency of solar collection system with latent functional thermal fluid for heating[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 135-139. | |
3 | 王亮, 林贵平, 王涛, 等. 潜热型功能热流体在扁管内的对流换热实验[J]. 航空学报, 2011, 32(11): 2124-2130. |
WANG L, LIN G P, WANG T, et al. Convective heat transfer characteristic of latent functionally thermal fluid in a flat tube[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2124-2130. | |
4 | 刘丽, 王亮, 王艺斐, 等. 基液为丙醇/水的相变微胶囊悬浮液的制备、稳定性及热物性[J]. 功能材料, 2014, 45(1): 1109-1113. |
LIU L, WANG L, WANG Y F, et al. Test and analysis on the thermal properties of microencapsulated phase change material suspension using propanol/water solution as base fluid[J]. Journal of Functional Materials, 2014, 45(1): 1109-1113. | |
5 | 余慧敏. 聚苯乙烯—二氧化硅@十四烷复合纳米相变胶囊蓄冷流体研究[D]. 广州: 华南理工大学, 2014. |
YU H M. Study of polystyrene-silica@tetradecane composite nanoencapsulated phase change materials for cold energy storage[D]. Guangzhou: South China University of Technology, 2014. | |
6 | 李晓燕, 李月明, 赵乔乔, 等. 相变微胶囊悬浮液的研究进展[J]. 材料导报, 2015, 29(5): 57-61. |
LI X Y, LI Y M, ZHAO Q Q, et al. Progress in research of phase change microencapsulated suspension[J]. Materials Review, 2015, 29(5): 57-61. | |
7 | 龚雨桐. 新型相变微胶囊纳米流体的制备及性能测试研究[D]. 北京: 北京建筑大学, 2020. |
GONG Y T. Study on the preparation and performance test of a new phase change microcapsule nanofluid[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. | |
8 | LIU C Z, MA Z Y, WANG J C, et al. Experimental research on flow and heat transfer characteristics of latent functional thermal fluid with microencapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2017, 115: 737-742. |
9 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: doi: 10.1016/j.ijthermal.sci.2020.106619. |
10 | FANG Y T, YU H M, WAN W J, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
11 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
12 | KARAIPEKLI A, ERDOĞAN T, BARLAK S. The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM[J]. Thermochimica Acta, 2019, 682: doi:10.1016/j.tca.2019.178406. |
13 | ZHANG H Z, SUN S Y, WANG X D, et al. Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389(1/2/3): 104-117. |
14 | HAN S J, CHEN Y P, LYU S Y, et al. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: doi:10.1016/j.colsurfa.2019.124046. |
15 | 杨超, 张东, 李秀强. 相变材料微胶囊研究现状及应用[J]. 储能科学与技术, 2014, 3(3): 203-209. |
YANG C, ZHANG D, LI X Q. Research and application of microencapsulated phase change materials[J]. Energy Storage Science and Technology, 2014, 3(3): 203-209. | |
16 | GAO P P, ZHOU Z H, YANG B, et al. Structural regulation of poly(urea-formaldehyde) microcapsules containing lube base oil and their thermal properties[J]. Progress in Organic Coatings, 2021, 150: doi:10.1016/j.porgcoat.2020.105990. |
17 | 王大程, 谭淑娟, 徐国跃, 等. 硬脂酸/碳纳米管/聚甲基丙烯酸甲酯复合相变胶囊的制备与热性能研究[J]. 太阳能学报, 2019, 40(1): 24-29. |
WANG D C, TAN S J, XU G Y, et al. Preparation and thermal properties of stearic acid/α-cnt/pmma composite microencapsulated phase change materials[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 24-29. | |
18 | 郭靖. 原位聚合脲醛树脂微胶囊制备技术研究[D]. 北京: 机械科学研究总院, 2019. |
GUO J. Preparation technology investigation of in situ polymerized PUF microcapsules[D]. Beijing: China Academy of Machinery Science and Technology, 2019. | |
19 | 张瑾, 蔡以兵, 魏取福, 等. 十八烷@脲醛树脂相变储能微胶囊的制备及表征[J]. 化工新型材料, 2017, 45(12): 57-59. |
ZHANG J, CAI Y B, WEI Q F, et al. Preparation and characterization of n-octadecane@urea formaldehyde resin phase change energy storage microcapsule[J]. New Chemical Materials, 2017, 45(12): 57-59. | |
20 | 王信刚, 陈忠发, 徐伟, 等. 癸酸相变微胶囊的制备及热性能[J]. 精细化工, 2019, 36(11): 2207-2212. |
WANG X G, CHEN Z F, XU W, et al. Preparation and thermal properties of capric acid phase change microcapsules[J]. Fine Chemicals, 2019, 36(11): 2207-2212. | |
21 | 倪卓, 白嘉健, 曾茵茵. 微胶囊碳纳米管储能材料的制备与表征[J]. 储能科学与技术, 2016, 5(2): 215-221. |
NI Z, BAI J J, ZENG Y Y. Preparation and characterization of microcapsules energy storage materials with carbon nanotube modified[J]. Energy Storage Science and Technology, 2016, 5(2): 215-221. | |
22 | 董晓丽. 降低空调冷冻水系统输送能耗的研究[D]. 上海: 东华大学, 2012. |
DONG X L. Research of reducing energy consumption of air conditioning chilled water system[D]. Shanghai: Donghua University, 2012. |
[1] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[2] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[3] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[4] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[5] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[6] | Jianjun WANG, Yuxia SHEN, Yu ZHANG, Tuodi ZHANG, Yong LI, Yi WANG. T-history method and its application in the determination of thermophysical properties of phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 280-286. |
[7] | Sai WANG, Zhigao SUN, Juan LI, Cuimin LI. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774. |
[8] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[9] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[10] | MEHVISH Tariq, CHENG Xiaomin, LI yuanyuan, HUANG Yi, LI Ge, WANG Xiuli, ZHU Shilei, WAQAR Khan. Influence of carbon nanotubes and nano-alumina on the thermal performance of nitrate phase change materials for thermal storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 47-53. |
[11] | WANG Hanqing, ZHAO Yue. Application of energy storage enclosure with phase change materials in building energy saving [J]. Energy Storage Science and Technology, 2018, 7(S1): 75-83. |
[12] | LI Dan, CHENG Xiaomin, LI Yuanyuan. Thermal properties of a modified MOF-stearic acid composite phase change materials [J]. Energy Storage Science and Technology, 2018, 7(4): 654-660. |
[13] | ZHANG Yelong1, SONG Pengfei1, ZHOU Wei1, WANG Gang1, XU Yong1, WENG Likui1, LENG Guanghui2, DING Yulong2. Electrical heating systems with heat storage using composite phase change materials [J]. Energy Storage Science and Technology, 2017, 6(6): 1250-. |
[14] | SHI Wenhua1, ZHU Xingyuan1, ZHU Jiaoqun1, LIU Fengli1,2, LI Ruguang1, ZHANG Hongguang1. Preparation and characterization of gypsum composites containing cupric- palmitic acid based phase change material in diatomite [J]. Energy Storage Science and Technology, 2017, 6(6): 1306-. |
[15] | MENG Lingran1,2, GUO Lijiang1, LI Xiaoyu1, WANG Hui1, CHEN Shengli2, ZHOU Yuan3, LI Jianqiang1. Salt hydrate based phase change materials for thermal energy storage—A review#br# [J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||