Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 743-753.doi: 10.19799/j.cnki.2095-4239.2022.0738
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shugang LIU1(), Bo MENG2, Zhenglong LI3, Yaxiong YANG3(), Jian CHEN1
Received:
2022-12-09
Revised:
2022-12-16
Online:
2023-03-05
Published:
2023-01-18
Contact:
Yaxiong YANG
E-mail:897260704@qq.com;yangyaxiong@xatu.edu.cn
CLC Number:
Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 743-753.
Fig. 6
(a) Voltage profiles obtained for Li x (Mg, Ni, Zn, Cu, Co)1-x O electrodes after the first cycle at 100 mA/g; (b) Voltage profiles obtained for HEO 0 electrode after different cycles at 100 mA/g; (c) Voltage profiles obtained for HEO 16 electrode after different cycles at 100 mA/g; (d) Cycling performance of Li x (Mg, Ni, Zn, Cu, Co)1-x O electrodes at 100 mA/g; (e) Rate capability of Li x (Mg, Ni, Zn, Cu, Co)1-x O electrodes; (f) Cycling performance of HEO 16 electrode at 1000 mA/g"
Fig. 7
(a) EIS spectra of fresh HEO 0 and HEO 16 electrodes and corresponding (b) fitting results; (c) EIS spectra of HEO 16 electrodes after different cycles and corresponding (d) fitting results; SEM images of HEO 16 electrodes (e) before cycling and after (f) the first cycle; (g) 10th cycles; (h) 50th cycles; and (i) 100th cycles"
Fig. 8
(a) CV curves of the HEO 16 electrode measured with different scanning rates; (b) relationship between Ip and logν for lithiation and delithiation peaks of the HEO 16; (c) contribution ratios of the capacitive and diffusion-controlled charge versus scan rates of the HEO 16;(d) CV curves of the HEO 0 electrode measured with different scanning rates; (e) relationship between Ip and logν for lithiation and delithiation peaks of the HEO 0; (f) Contribution ratios of the capacitive and diffusion-controlled charge versus scan rates of the HEO 0"
1 | 麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5): 871-888. |
MA Y T, HUANG J, LIU X, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 871-888. | |
2 | 佟永丽, 武祥. 金属有机框架衍生的Co3O4电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
TONG Y L, WU X. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework[J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. | |
3 | 钮准, 张学燕, 冯佳伟, 等. FeSe2-C三维导电复合材料的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3470-3477. |
NIU Z, ZHANG X Y, FENG J W, et al. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites[J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. | |
4 | FAN L L, LI X F, SONG X S, et al. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2637-2648. |
5 | YUAN S, DUAN X, LIU J Q, et al. Recent progress on transition metal oxides as advanced materials for energy conversion and storage[J]. Energy Storage Materials, 2021, 42: 317-369. |
6 | FANG S, BRESSER D, PASSERINI S. Transition metal oxide anodes for electrochemical energy storage in lithium‐and sodium-ion batteries[J]. Transition Metal Oxides for Electrochemical Energy Storage, 2022: 55-99. |
7 | LEI Z H, LEE J M, SINGH G, et al. Recent advances of layered-transition metal oxides for energy-related applications[J]. Energy Storage Materials, 2021, 36: 514-550. |
8 | WANG D, JIANG S D, DUAN C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. Journal of Alloys and Compounds, 2020, 844: doi: 10.1016/j.jallcom.2020.156158. |
9 | LIU J P, DONG L W, CHEN D J, et al. Metal oxides with distinctive valence states in an electron-rich matrix enable stable high-capacity anodes for Li ion batteries[J]. Small Methods, 2020, 4(2): doi: 10.1002/smtd.201900753. |
10 | 尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. | |
11 | YUE L C, MA C Q, YAN S H, et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage[J]. Nano Research, 2022, 15(1): 186-194. |
12 | NI S B, LIU J L, CHAO D L, et al. Vanadate-based materials for Li-ion batteries: The search for anodes for practical applications[J]. Advanced Energy Materials, 2019, 9(14): doi: 10.1002/aenm.201803324. |
13 | WAN B C, GUO J C, LAI W H, et al. Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 843: doi: 10.1016/j.jallcom.2020.156050. |
14 | LI H, WU L J, ZHANG S G, et al. Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 832: doi: 10.1016/j.jallcom.2020.155008. |
15 | YANG X B, WANG H Q, SONG Y Y, et al. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022: 14(23): 26873-26881. |
16 | DING Y C, HU L H, HE D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal, 2020, 380: doi: 10.1016/j.cej.2019.122489. |
17 | SUN R, QIN Z X, LI Z Y, et al. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode[J]. Dalton Transactions (Cambridge, England: 2003), 2020, 49(40): 14237-14242. |
18 | CHEN Z W, FEI S M, WU C H, et al. Integrated design of hierarchical CoSnO3@NC@MnO@NC nanobox as anode material for enhanced lithium storage performance[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19768-19777. |
19 | LIANG W F, ZHONG L P, QUAN L J, et al. Sandwich-like MoO3/ZnCo2O4 QDs@C@rGO/MoO3 hybrid nanosheets as high-performance anode for lithium-ion batteries[J]. Ceramics International, 2021, 47(22): 32118-32129. |
20 | LIU J Z, WU J, ZHOU C C, et al. Single-phase ZnCo2O4 derived ZnO-CoO mesoporous microspheres encapsulated by nitrogen-doped carbon shell as anode for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 825: doi: 10.1016/j.jallcom.2020.153951. |
21 | WANG Q S, SARKAR A, WANG D, et al. Multi-anionic and-cationic compounds: New high entropy materials for advanced Li-ion batteries[J]. Energy & Environmental Science, 2019, 12(8): 2433-2442. |
22 | SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 1-9. |
23 | ROST C M, RAK Z, BRENNER D W, et al. Local structure of the Mgx Nix Cox Cux Znx O(x=0.2) entropy-stabilized oxide: An EXAFS study[J]. Journal of the American Ceramic Society, 2017, 100(6): 2732-2738. |
24 | BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(4): 328-333. |
25 | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541. |
26 | GRZESIK Z, SMOŁA G, MISZCZAK M, et al. Defect structure and transport properties of (Co, Cr, Fe, Mn, Ni)3O4 spinel-structured high entropy oxide[J]. Journal of the European Ceramic Society, 2020, 40(3): 835-839. |
27 | SARKAR A, WANG Q S, SCHIELE A, et al. High-entropy oxides: Fundamental aspects and electrochemical properties[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(26): doi: 10.1002/adma.201806236. |
28 | GHIGNA P, AIROLDI L, FRACCHIA M, et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50344-50354. |
29 | KHERADMANDFARD M, MINOUEI H, TSVETKOV N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications[J]. Materials Chemistry and Physics, 2021, 262: doi: 10.1016/j.matchemphys. 2021.124265. |
30 | CHEN T Y, WANG S Y, KUO C H, et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(41): 21756-21770. |
31 | MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. |
32 | SUN J R, HUANG L, XU G J, et al. Mechanistic insight into the impact of pre-lithiation on the cycling stability of lithium-ion battery[J]. Materials Today, 2022, 58: 110-118. |
33 | CHUNG D J, YOUN D, KIM S, et al. Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials[J]. Nano Energy, 2021, 89: doi: 10.1016/j.nanoen.2021.106378. |
34 | CHOI J, JEONG H, JANG J, et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries[J]. Journal of the American Chemical Society, 2021, 143(24): 9169-9176. |
35 | YANG Y X, QU X L, ZHANG X, et al. Higher than 90% initial coulombic efficiency with staghorn-coral-like 3D porous LiFeO2- x as anode materials for Li-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(22): doi: 10.1002/adma.201908285. |
36 | XIE W L, YANG Z Q, CHUN H. Catalytic properties of lithium-doped ZnO catalysts used for biodiesel preparations[J]. Industrial & Engineering Chemistry Research, 2007, 46(24): 7942-7949. |
37 | USHARANI N J, SHRINGI R, SANGHAVI H, et al. Role of size, alio-/ multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co, Cu, Mg, Na, Ni, Zn)O[J]. Dalton Transactions (Cambridge, England: 2003), 2020, 49(21): 7123-7132. |
38 | QIU N, CHEN H, YANG Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance[J]. Journal of Alloys and Compounds, 2019, 777: 767-774. |
39 | ZHANG J, JIANG H, ZENG Y B, et al. Oxygen-defective Co3O4 for pseudo-capacitive lithium storage[J]. Journal of Power Sources, 2019, 439: doi: 10.1016/j.jpowsour.2019.227026. |
40 | YUAN D, DOU Y H, XU L, et al. Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage[J]. Journal of Materials Chemistry A, 2020, 8(27): 13443-13451. |
[1] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[2] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[3] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[4] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[5] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[6] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[7] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[8] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[9] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[10] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[11] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[12] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[13] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[14] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[15] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||