Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1257-1267.doi: 10.19799/j.cnki.2095-4239.2022.0767
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yuanchang DONG1(), Xiaoqiong PANG1(), Jianfang JIA2, Yuanhao SHI2, Jie WEN2, Xiao LI1, Xin ZHANG1
Received:
2022-12-27
Revised:
2023-02-21
Online:
2023-04-05
Published:
2023-05-08
Contact:
Xiaoqiong PANG
E-mail:dyc36309123@163.com;xqpang@nuc.edu.cn
CLC Number:
Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR[J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267.
Table 1
Spearman correlation analysis of 15 potential HIs and capacity of four batteries"
特征提取对象 | HIs | Spearman相关系数 | |||
---|---|---|---|---|---|
B0005 | B0006 | B0007 | B0018 | ||
放电电压 | HI1 | 0.9943 | 0.9982 | 0.9953 | 0.9876 |
放电电流 | HI2 | 0.9873 | 0.9986 | 0.9949 | 0.9888 |
放电温度 | HI3 | 0.8118 | 0.6690 | 0.8864 | 0.9688 |
放电负载电压 | HI4 | 0.9953 | 0.9986 | 0.9945 | 0.9917 |
放电负载电流 | HI5 | 0.9870 | 0.9987 | 0.9945 | 0.9892 |
放电数据测量时间 | HI6 | 0.9972 | 0.9976 | 0.9951 | 0.9929 |
充电电压 | HI7 | -0.3348 | -0.3289 | -0.3518 | 0.9707 |
充电电流 | HI8 | 0.9908 | 0.9908 | 0.9912 | 0.9734 |
充电温度 | HI9 | -0.2286 | -0.2668 | -0.2123 | 0.9567 |
充电负载电压 | HI10 | -0.3144 | -0.3237 | -0.5934 | 0.9634 |
充电负载电流 | HI11 | 0.9908 | 0.9907 | 0.9913 | 0.9734 |
充电数据测量时间 | HI12 | -0.3560 | -0.3241 | -0.3674 | 0.9349 |
HI13 | 0.9975 | 0.9990 | 0.9959 | 0.9949 | |
HI14 | -0.5057 | -0.7387 | -0.3497 | 0.6355 | |
HI15 | 0.9833 | 0.9871 | 0.9730 | 0.9929 |
1 | PARGOLETTI E, ARNABOLDI S, CAPPELLETTI G, et al. Smart interfaces in Li-ion batteries: Near-future key challenges[J]. Electrochimica Acta, 2022, 415: doi: 10.1016/j.electacta.2022.140258. |
2 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
3 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
4 | 陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210. |
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210. | |
5 | PANG X Q, ZHAO Z, WEN J, et al. An interval prediction approach based on fuzzy information granulation and linguistic description for remaining useful life of lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231750. |
6 | CHU A, ALLAM A, CORDOBA ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/i.jpowsour.2020.228991. |
7 | ZHOU W L, LU Q, ZHENG Y P. Review on the selection of health indicator for lithium ion batteries[J]. Machines, 2022, 10(7): 512. |
8 | KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries[J]. Applied Energy, 2022, 308: doi: 10.1016/j.apenergy.2021.118348. |
9 | JIA J F, YUAN S F, SHI Y H, et al. Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction[J]. iScience, 2022, 25(4): doi:10.1016/j.isci.2022.103988. |
10 | 李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021. |
LI X D, ZHANG X W. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. | |
11 | LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484. |
12 | PANG X Q, LIU X Y, JIA J F, et al. A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression[J]. Microelectronics Reliability, 2021, 127: doi: 10.1016/j.microrel.2021.114405. |
13 | PAN W J, LUO X S, ZHU M T, et al. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103072. |
14 | WALL M E, RECHTSTEINER A, ROCHA L M. Singular value decomposition and principal component analysis[M]//A Practical Approach to Microarray Data Analysis. Boston: Kluwer Academic Publishers, 2005: 91-109. |
15 | GU X Y, SEE K W, LI P H, et al. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model[J]. Energy, 2023, 262: doi:10.1016/j.energy.2022.125501. |
16 | WEI M, YE M, WANG Q, et al. Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and Gaussian mixture regression[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103558. |
17 | 王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569. |
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. | |
18 | SAHA B, GOEBEL K. Battery data set[R/OL]. [2020-10-20]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. |
19 | TANG T, YUAN H M. The capacity prediction of Li-ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021. 230572. |
20 | FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29:doi:10.1016/j.est.2020. 101329. |
21 | BLOOM I, CHRISTOPHERSEN J P, ABRAHAM D P, et al. Differential voltage analyses of high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 157(1): 537-542. |
22 | SHIBAGAKI T, MERLA Y, OFFER G J. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry[J]. Journal of Power Sources, 2018, 374: 188-195. |
23 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
24 | CLERICI D, MOCERA F, SOMÀ A. Electrochemical-mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022. 231735. |
25 | ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. |
[1] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[2] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[3] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[4] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[5] | Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery [J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
[6] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[7] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[8] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[9] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[10] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[11] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[12] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[13] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[14] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[15] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||