Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1268-1277.doi: 10.19799/j.cnki.2095-4239.2022.0701
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2022-12-06
Revised:
2022-12-16
Online:
2023-04-05
Published:
2023-05-08
Contact:
Xingyan YAO
E-mail:hly980911@163.com;yaoxingyan-jsj@163.com
CLC Number:
Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test[J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277.
Table 5
Results of Orthogonal test"
试验号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | Tem | Time |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A*B | A*B | C | A*C | A*C | B*C | 空列 | 空列 | B*C | 空列 | 空列 | |||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 841 | 42 |
2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 882 | 30 |
3 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 841 | 42 |
4 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 830 | 44 |
5 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 852.3 | 30 |
6 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 2 | 852.3 | 30 |
7 | 1 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 839.8 | 46 |
8 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | 3 | 845.8 | 32 |
9 | 1 | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 821.8 | 49 |
10 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 838.5 | 45 |
11 | 2 | 1 | 2 | 3 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 881.3 | 31 |
12 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 881.3 | 31 |
13 | 2 | 2 | 3 | 1 | 1 | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 2 | 828 | 47 |
14 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 2 | 3 | 856.8 | 32 |
15 | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 3 | 1 | 828 | 47 |
16 | 2 | 3 | 1 | 2 | 1 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | 1 | 803.8 | 54 |
17 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 840.5 | 34 |
18 | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 3 | 844.8 | 33 |
19 | 3 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 842.5 | 39 |
20 | 3 | 1 | 3 | 2 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 879.5 | 30 |
21 | 3 | 1 | 3 | 2 | 1 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 842.5 | 39 |
22 | 3 | 2 | 1 | 3 | 1 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 1 | 831 | 46 |
23 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 851.5 | 31 |
24 | 3 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 851.5 | 31 |
25 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 3 | 2 | 1 | 2 | 1 | 3 | 818.3 | 52 |
26 | 3 | 3 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 1 | 844.3 | 32 |
27 | 3 | 3 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 818.3 | 52 |
kTem1 | 845.08 | 858.83 | 843.00 | 839.72 | 830.30 | 848.89 | 844.61 | 842.69 | — | — | 840.81 | — | — | — | — |
kTem2 | 844.75 | 842.36 | 846.25 | 843.11 | 858.73 | 840.28 | 847.31 | 846.28 | — | — | 848.47 | — | — | — | — |
kTem3 | 842.14 | 830.78 | 842.72 | 849.14 | — | 842.81 | 840.06 | 843.00 | — | — | 842.69 | — | — | — | — |
RTem | 2.94 | 28.06 | 3.53 | 9.42 | 28.43 | 8.61 | 7.25 | 3.58 | — | — | 7.67 | — | — | — | — |
kTime1 | 38.33 | 36.56 | 38.11 | 41.78 | 46.00 | 37.33 | 39.00 | 36.89 | — | — | 39.22 | — | — | — | — |
kTime2 | 39.33 | 37.56 | 38.56 | 37.00 | 31.31 | 40.00 | 37.78 | 40.22 | — | — | 39.00 | — | — | — | — |
kTime3 | 39.11 | 42.67 | 40.11 | 38.00 | — | 39.44 | 40.00 | 39.67 | — | — | 38.56 | — | — | — | — |
RTime | 1.00 | 6.11 | 2.00 | 4.78 | 14.69 | 2.67 | 2.22 | 3.33 | — | — | 0.67 | — | — | — | — |
1 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
2 | OUYANG D X, CHEN M Y, LIU J H, et al. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions[J]. RSC Advances, 2018, 8(58): 33414-33424. |
3 | ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. |
4 | MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. |
5 | YE M Q, HU G D, GUO F, et al. A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method[J]. Applied Thermal Engineering, 2020,174: doi: 10.1016/j.appl thermaleng. 2020.115129. |
6 | JIA Y K, UDDIN M, LI Y X, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs: A modeling study[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101668. |
7 | JIN C Y, SUN Y D, YAO J, et al. No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology[J]. eTransportation, 2022,14: doi: 10.1016/j.etran. 2022. 100199. |
8 | WANG W H, HE T F, HE S, et al. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation[J]. Process Safety and Environmental Protection, 2021, 154: 104-117. |
9 | WANG Z R, HE T F, BIAN H, et al. Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est. 2021.102956. |
10 | 李斌, 汪展, 李国清, 等. EFB电池负极用炭材料的研究[J]. 蓄电池, 2022, 59(3): 114-116, 122. |
LI B, WANG Z, LI G Q, et al. Study on carbon materials for negative electrode of EFB battery[J]. Chinese LABAT Man, 2022, 59(3): 114-116, 122. | |
11 | 车雯, 万晓雯, 何辉辉, 等. 锂离子电池正极材料LiCoMnO4制备及其电化学性能研究[J]. 应用技术学报, 2021, 21(2): 138-143. |
CHE W, WAN X W, HE H H, et al. Optimized synthesis and electrochemical performance of LiCoMnO4 cathode material for lithium-ion batteries[J]. Journal of Technology, 2021, 21(2): 138-143. | |
12 | PAN C F, TANG Q M, HE Z G, et al. Structure optimization of battery module with a parallel multi-channel liquid cooling plate based on orthogonal test[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(2): 021104. |
13 | WANG J G, LU S, WANG Y Z, et al. Effect analysis on thermal behavior enhancement of lithium-ion battery pack with different cooling structures[J]. Journal of Energy Storage, 2020, 32: doi:10.1016/j.est.2020.101800. |
14 | 宋亚娟, 沈杰, 徐震, 等. 低速电动车用锂离子电池热失控风险监测研究[J]. 电源技术, 2021, 45(8): 1005-1007. |
SONG Y J, SHEN J, XU Z, et al. Study on the risk of thermal runaway in the lithium ion battery for low speed electric vehicle[J]. Chinese Journal of Power Sources, 2021, 45(8): 1005-1007. | |
15 | 黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019. |
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019. | |
16 | XU J J, MEI W X, ZHAO C P, et al. Study on thermal runaway mechanism of 1000 mAh lithium ion pouch cell during nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 273-284. |
17 | 刘仕强, 王芳, 樊彬, 等. 针刺速度对动力锂离子电池安全性的影响[J]. 汽车安全与节能学报, 2013, 4(1): 82-86. |
LIU S Q, WANG F, FAN B, et al. Influence of penetration speeds on power Li-ion-cell's safety performance[J]. Journal of Automotive Safety and Energy, 2013, 4(1): 82-86. | |
18 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. | |
19 | WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: doi: 10.1016/j.jhazmat.2020.122361. |
[1] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[2] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[3] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[4] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[5] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[6] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[7] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[8] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[9] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[10] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[11] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[12] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[13] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[14] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[15] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||