Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1244-1256.doi: 10.19799/j.cnki.2095-4239.2022.0708
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2022-11-29
Revised:
2022-12-26
Online:
2023-04-05
Published:
2023-05-08
Contact:
Haizhong CHEN
E-mail:1036980618@qq.com;11715452@qq.com
CLC Number:
Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM[J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256.
Table 1
Prediction results of different working conditions"
工况 | 预测模型 | 平均绝对误差MAE | 均方根误差RMSE | 绝对相关系数R2 | 运行时间/s |
---|---|---|---|---|---|
DST | CEEMDAN-ISOA-ELM | 0.0033653 | 0.0048175 | 0.9949 | 24.785 |
PSO-ELM | 0.0051031 | 0.0067167 | 0.9891 | 16.066 | |
SOA-ELM | 0.0061713 | 0.0077381 | 0.9806 | 19.427 | |
LSTM | 0.032081 | 0.036609 | 0.6476 | 70 | |
CNN-GRU | 0.012798 | 0.014423 | 0.9650 | 99 | |
FUDS | CEEMDAN-ISOA-ELM | 0.0051382 | 0.0061629 | 0.9912 | 28.998 |
PSO-ELM | 0.0089028 | 0.011362 | 0.9763 | 19.474 | |
SOA-ELM | 0.010233 | 0.014265 | 0.9672 | 20.597 | |
LSTM | 0.024916 | 0.033485 | 0.5548 | 72 | |
CNN-GRU | 0.030218 | 0.033868 | 0.6756 | 68 | |
US06 | CEEMDAN-ISOA-ELM | 0.0062962 | 0.0076641 | 0.9863 | 23.761 |
PSO-ELM | 0.0072198 | 0.0084125 | 0.9837 | 19.894 | |
SOA-ELM | 0.012482 | 0.015775 | 0.9597 | 19.532 | |
LSTM | 0.043681 | 0.056403 | 0.0945 | 69 | |
CNN-GRU | 0.032721 | 0.036823 | 0.6643 | 35 | |
1 A循环测试 | CEEMDAN-ISOA-ELM | 0.011061 | 0.021227 | 0.9445 | 21.641 |
PSO-ELM | 0.037605 | 0.067052 | 0.7332 | 16.868 | |
SOA-ELM | 0.027703 | 0.052061 | 0.8175 | 13.237 | |
LSTM | 0.021475 | 0.036256 | 0.7320 | 91 | |
CNN-GRU | 0.017286 | 0.021406 | 0.9235 | 65 |
1 | 李军, 李虎林. 电动汽车锂离子电池荷电状态估算方法综述[J]. 科学技术与工程, 2022, 22(6): 2147-2158. |
LI J, LI H L. Review of state of charge estimation methods for electric vehicle lithium-ion batteries[J]. Science Technology and Engineering, 2022, 22(6): 2147-2158. | |
2 | 程麒豫, 张希, 高一钊, 等. 基于降阶电化学模型估算锂离子电池状态[J]. 电池, 2021, 51(2): 110-113. |
CHENG Q Y, ZHANG X, GAO Y Z, et al. Estimating state of Li-ion battery based on reduced-order electrochemical model[J]. Battery Bimonthly, 2021, 51(2): 110-113. | |
3 | 袁宏亮, 刘莉, 吕桃林, 等. 基于改进模型的锂离子电池SOC估计[J]. 电池, 2021, 51(5): 445-449. |
YUAN H L, LIU L, LÜ T L, et al. SOC estimation for Li-ion battery based on improved model[J]. Battery Bimonthly, 2021, 51(5): 445-449. | |
4 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. |
FU S Y, LÜ T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. | |
5 | 郑永飞, 文怀兴, 韩昉, 等. 基于LSTM神经网络的动力电池SOC估算研究[J]. 计算机应用与软件, 2020, 37(3): 78-81, 88. |
ZHENG Y F, WEN H X, HAN F, et al. Soc estimation of power battery based on lstm neural network[J]. Computer Applications and Software, 2020, 37(3): 78-81, 88. | |
6 | HUANG Z L, YANG F F, XU F, et al. Convolutional gated recurrent unit-recurrent neural network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 93139-93149. |
7 | 李泱, 张营, 邹博雨, 等. 基于EMD-GPR的锂离子电池剩余寿命预测方法研究[J]. 农业装备与车辆工程, 2021, 59(11): 60-63. |
LI Y, ZHANG Y, ZOU B Y, et al. Research on residual life prediction method of lithium ion battery based on EMD-GPR[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 60-63. | |
8 | 易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573. |
YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573. | |
9 | 杨彦茹, 温杰, 史元浩, 等. 基于CEEMDAN和SVR的锂离子电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2020, 34(12): 197-205. |
YANG Y R, WEN J, SHI Y H, et al. Remaining useful life prediction for lithium-ion battery based on CEEMDAN and SVR[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(12): 197-205. | |
10 | 宋绍剑, 王志浩, 林小峰. 基于极限学习机的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2018, 42(6): 806-808, 881. |
SONG S J, WANG Z H, LIN X F. Research on SOC estimation of LiFePO4 batteries based on ELM[J]. Chinese Journal of Power Sources, 2018, 42(6): 806-808, 881. | |
11 | 缪家森, 成丽珉, 吕宏水. 基于PSO-ELM的储能锂电池荷电状态估算[J]. 电力工程技术, 2020, 39(1): 165-169, 199. |
MIAO J S, CHENG L M, LÜ H S. Estimation of state of charge of energy storage lithium battery based on PSO-ELM[J]. Electric Power Engineering Technology, 2020, 39(1): 165-169, 199. | |
12 | LI C Q, ZHOU J, TAO M, et al. Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM[J]. Transportation Geotechnics, 2022, 36: doi:10.1016/j.trgeo.2022.100819. |
13 | 戴婷, 张榆锋, 章克信, 等. 经验模态分解及其模态混叠消除的研究进展[J]. 电子技术应用, 2019, 45(3): 7-12. |
DAI T, ZHANG Y F, ZHANG K X, et al. The research progress of empirical mode decomposition and mode mixing elimination[J]. Application of Electronic Technique, 2019, 45(3): 7-12. | |
14 | 李昌明. 经验模态分解融合深度学习的时间序列预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(2): 175-183. |
LI C M. Time series prediction model fusing empirical mode decomposition and deep learning[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(2): 175-183. | |
15 | 万磊, 余飞, 鲁统伟, 等. 基于CEEMDAN-CNN-GRU组合模型的短期负荷预测方法[J]. 河北科技大学学报, 2022, 43(2): 154-161. |
WAN L, YU F, LU T W, et al. Short-term load forecasting based on CEEMDAN-CNN-GRU combined model[J]. Journal of Hebei University of Science and Technology, 2022, 43(2): 154-161. | |
16 | 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50. |
ZHAO L Y, LIU Y B, SHEN X D, et al. Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power System Protection and Control, 2022, 50(1): 42-50. | |
17 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
18 | 丁阳征. 基于ELM的锂离子电池剩余寿命预测方法研究[D]. 太原: 中北大学, 2019.DING Y Z. Remaining useful life prediction method of lithium ion batteries based on extreme learning machine[D]. Taiyuan: North University of China, 2019. |
19 | 王亦乐, 黄宏成, 杨健, 等. 基于SSA-ELM的动力电池健康状况预测研究[J]. 传动技术, 2022, 36(2): 3-6, 13. |
WANG Y L, HUANG H C, YANG J, et al. Prediction of power battery health state based on SSA-ELM[J]. Drive System Technique, 2022, 36(2): 3-6, 13. | |
20 | 吴婧睿. 基于GSO-ELM的锂离子电池剩余寿命间接预测方法研究[D]. 大连: 大连海事大学, 2017. |
WU J R. Research on indirect prediction method of remaining life based on GSO-ELM for lithium-ion battery[D]. Dalian: Dalian Maritime University, 2017. | |
21 | 周召娣. 极限学习机相关算法的优化及应用研究[D]. 南京: 南京信息工程大学, 2016. |
ZHOU Z D. Research on optimization and application of extreme learning machine[D]. Nanjing: Nanjing University of Information Science & Technology, 2016. | |
22 | DHIMAN G, KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196. |
23 | 毛玲, 胡慧仲, 赵晋斌, 等. 一种多时间尺度下的锂离子电池剩余寿命混合预测方法[J]. 供用电, 2021, 38(6): 7-13. |
MAO L, HU H Z, ZHAO J B, et al. A hybrid prediction method of lithium-ion battery remaining useful life under multiple time scales[J]. Distribution & Utilization, 2021, 38(6): 7-13. |
[1] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[2] | Farong KOU, Xi LUO, Hao MEN, Yangjuan GUO, Tianxiang YANG. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine [J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. |
[3] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[4] | Zheng CHEN, Zhide WANG, Wenbiao MOU, Peiwang ZHU, Gang XIAO. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm [J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. |
[5] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[6] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[7] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[8] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[9] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[10] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[11] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[12] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[13] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[14] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[15] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||