1 |
严文彩, 李宏冰, 周殿莹. 电磁轴承的原理与应用[J]. 当代化工, 2013, 42(8): 1084-1087.
|
|
YAN W C, LI H B, ZHOU D Y. Principle and application of active magnetic bearings[J]. Contemporary Chemical Industry, 2013, 42(8): 1084-1087.
|
2 |
沈钺, 虞烈. 电磁轴承及控制系统的设计原理及参数选择[J]. 轴承, 2001(9): 13-16, 47.
|
|
SHEN Y, YU L. Design priciple and parameter selection for electric-magnetic bearing and its control system[J]. Bearing, 2001(9): 13-16, 47.
|
3 |
杨艳丽, 汪希平. 电磁轴承技术及其应用开发[J]. 机电工程技术, 2001, 30(2): 7-9, 31.
|
|
YANG Y L, WANG X P. Applications and exploitations for active MagneticBearing technology[J]. Mechanical & Electrical Engineering Technology, 2001, 30(2): 7-9, 31.
|
4 |
王其磊, 杨逢瑜, 杨倩, 等. 电磁轴承在立式高速泵中的应用[J]. 排灌机械工程学报, 2010, 28(1): 88-92.
|
|
WANG Q L, YANG F Y, YANG Q, et al. Application of electromagnetic bearings in vertical high-speed pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(1): 88-92.
|
5 |
李德海, 卫海岗, 戴兴建. 飞轮储能技术原理、应用及其研究进展[J]. 机械工程师, 2002(4): 5-7.
|
|
LI D H, WEI H G, DAI X J. The principle, application and progress of the technology of flywheel energy storage[J]. Mechanical Engineer, 2002(4): 5-7.
|
6 |
蒋启龙, 胡振球. 轴向主动磁轴承的改进不完全微分PID控制[J]. 西南交通大学学报, 2015, 50(2): 241-246.
|
|
JIANG Q L, HU Z Q. Improved incomplete derivative PID control of axial active magnetic bearing[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 241-246.
|
7 |
王忠博, 毛川, 祝长生. 主动电磁轴承-刚性转子系统PID控制器设计方法[J]. 中国电机工程学报, 2018, 38(20): 6154-6163.
|
|
WANG Z B, MAO C, ZHU C S. A design method of PID controller for active magnetic bearings-rigid rotor systems[J]. Proceedings of the CSEE, 2018, 38(20): 6154-6163.
|
8 |
李超, 谢振宇, 吴传响, 等. 基于模糊控制的磁轴承PID控制算法研究[J]. 机械制造与自动化, 2022, 51(2): 38-41.
|
|
LI C, XIE Z Y, WU C X, et al. Research on PID control algorithm of magnetic bearing based on fuzzy control[J]. Machine Building & Automation, 2022, 51(2): 38-41.
|
9 |
刘路, 王跃方. 主动电磁轴承系统变参数非线性PID控制研究[J]. 风机技术, 2020, 62(4): 55-60.
|
|
LIU L, WANG Y F. On nonlinear PID control of active electromagnetic bearing system with variable parameters[J]. Compressor, Blower & Fan Technology, 2020, 62(4): 55-60.
|
10 |
陈丽文, 崔冰艳, 解勇涛, 等. 一种单自由度磁液双悬浮轴承控制系统及其控制方法: CN109163012A [P]. 2019.
|
11 |
崔红. 高速电机磁力轴承控制策略的仿真研究[J]. 科技风, 2019(34): 13.
|
|
CUI H. Simulation study on control strategy of magnetic bearing for high-speed motor[J]. Technology Wind, 2019(34): 13.
|
12 |
CUI P, GUO Z Y, LI J. Study on two feedback linearization control methods for the magnetic suspension system[C]//第三十四届中国控制会议 ,杭州, 2015.
|
13 |
WU R Q, ZHANG W. Nonlinear dynamics of a rotor-active magnetic bearing system with 16-pole and the time varying stiffness[C]//第四届国际动力学、振动与控制学术会议, 上海, 2014.
|
14 |
YANG X, GAO Y, DU J G, et al. P-Fuzzy-PID control in a machine tool magnetic suspension system[C]//2008 International Conference on Electrical Machines and Systems.
|
15 |
KANDIL M S, DUBOIS M R, BAKAY L S, et al. Application of second-order sliding-mode concepts to active magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 855-864.
|
16 |
张生光, 张学宁, 胡文颖. 基于LQG与LMS的电磁轴承系统振动控制研究[J]. 机电工程, 2022, 39(2): 210-216.
|
|
ZHANG S G, ZHANG X N, HU W Y. Vibration control of active magnetic bearing system based on LQG and LMS[J]. Mechanical & Electrical Engineering Magazine, 2022, 39(2): 210-216.
|
17 |
雷曙遥,潘军.无人战车火炮速度环自抗扰设计[J/OL]. 火炮发射与控制学报: 1-6[2023-02-23]. http://kns.cnki.net/kcms/detail/61.1280.tj.20230214.1401.006.html.
|
18 |
吴丹, 侯利民, 王巍, 等. 基于滑模自抗扰控制的开关磁阻电机调速系统[J]. 制造业自动化, 2023, 45(1): 135-139.
|
|
WU D, HOU L M, WANG W, et al. Sliding mode-ADRC for switched reluctance motor speed control system[J]. Manufacturing Automation, 2023, 45(1): 135-139.
|
19 |
邱超颖, 黄媛, 余溢威, 等. 基于改进型RISE-MC-LADRC的逆变器电压控制[J/OL]. 电力系统及其自动化学报: 1-9[2023-02-23].
|
20 |
鲁雅阁, 张志豪. 基于MPC的智能汽车自抗扰控制[J]. 内燃机与配件, 2023(1): 20-23.
|
|
LU Y G, ZHANG Z H. Automatic disturbance rejection control of vehicle based on MPC[J]. Internal Combustion Engine & Parts, 2023(1): 20-23.
|
21 |
王金鑫,任永峰,孟庆天, 等.自抗扰控制的九开关变换器提升分散式风电系统电能质量[J/OL]. 高电压技术: 1-10[2023-02-25]. https://doi.org/10.13336/j.1003-6520.hve.20221382.
|
22 |
李冰林, 曾励, 张鹏铭, 等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报, 2021, 25(7): 129-138.
|
|
LI B L, ZENG L, ZHANG P M, et al. Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric Machines and Control, 2021, 25(7): 129-138.
|
23 |
朱熀秋, 赵泽龙. 三自由度六极混合磁轴承线性/非线性自抗扰切换解耦控制[J]. 中国电机工程学报, 2018, 38(10): 3077-3086.
|
|
ZHU H Q, ZHAO Z L. Decoupling control based on linear/nonlinear active disturbance rejection switching for 3-degree-of-freedom 6-pole hybrid magnetic bearing[J]. Proceedings of the CSEE, 2018, 38(10): 3077-3086.
|
24 |
何凌云. 磁悬浮系统的自抗扰控制[D]. 长沙: 国防科学技术大学, 2006.
|
|
HE L Y. Active disturbance rejection control of magnetic suspension system[D]. Changsha: National University of Defense Technology, 2006.
|
25 |
韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
|
|
HAN J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008.
|
26 |
王靖翔. E型电磁轴承的支承特性分析与试验[D]. 哈尔滨: 哈尔滨工程大学, 2016.
|
|
WANG J X. Analysis and test of supporting characteristics of E-type electromagnetic bearing[D]. Harbin: Harbin Engineering University, 2016.
|
27 |
付凯. 基于LABVIEW的电磁轴承监控系统设计[D]. 哈尔滨: 哈尔滨工程大学, 2017.
|
|
FU K. Design of electromagnetic bearing monitoring system based on LABVIEW[D]. Harbin: Harbin Engineering University, 2017.
|