Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1606-1619.doi: 10.19799/j.cnki.2095-4239.2023.0934
• Energy Storage System and Engineering • Previous Articles Next Articles
Zipan NIE1(), Liye XIAO1,2(
), Qingquan QIU1, Jingye ZHANG1
Received:
2023-12-22
Revised:
2024-01-03
Online:
2024-05-28
Published:
2024-05-28
Contact:
Liye XIAO
E-mail:znie@mail.iee.ac.cn;xiao@mail.iee.ac.cn
CLC Number:
Zipan NIE, Liye XIAO, Qingquan QIU, Jingye ZHANG. Overview of the development of underground pumped hydro storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1606-1619.
Table 2
Design and implementation of some pumped storage power stations based on abandoned mines"
抽水蓄能 电站名称 | 西班牙Asturian | 南非FWR | 美国Mount hope | 德国Prosper-Haniel | 德国Grund ore mine |
---|---|---|---|---|---|
水头/m | 300~600 | 1200/1500(两级) | 810 | 560 | 700 |
库容/m3 | 17万 | 100万 | 620万 | 60万 | 24~26万 |
功率/MW | 23.52 | 水泵:955水轮机:1230 | 2040 | 200 | 100 |
储能量/MWh | 141 | 6800 | / | 820 | 400 |
实施现状 | 完成设计 | 完成设计 | 计划先建设1000 MW | 提出计划 | 提出计划 |
废弃矿类型 | 煤矿 | 金矿 | 铁矿 | 煤矿 | 铅锌矿 |
Table 3
Comprehensive comparison between reversible pump turbine and ternary set"
参数和功能 | 定速可逆式 | 调速可逆式 | 三机式 | |
---|---|---|---|---|
额定功率 | 可达500 MW | 可达500 MW | 可达300 MW | |
额定水头 | 单级可达700 m 多级可达1000 m | 单级可达700 m 多级可达1000 m | 可达1500 m | |
技术成熟度 | 成熟 | 成熟 | 成熟 | |
发电状态(水轮机工作状态)[ | 功率输出(占额定功率的百分比/%) | 30%~100% | 20%~100% | 0~100% |
静止到水轮机模式的启动时间/s | 70 | 75~85 | 65 | |
水轮机到水泵模式的转换时间/s | 240~420 | 240~415 | 25 | |
调频 | 具备 | 具备 | 具备 | |
旋转备用 | 具备 | 具备 | 具备 | |
功率斜坡变化/负荷跟随 | 具备 | 具备 | 具备 | |
输出无功/电压支撑 | 具备 | 具备 | 具备 | |
发电机切机 | 具备 | 具备 | 具备 | |
储能状态(水泵工作状态)[ | 功率输入(占额定功率的百分比/%) | 100% | 60%~100% (75%~125%) | 0~100% |
静止到水泵模式的启动时间/s | 160~340 | 160~230 | 80 | |
水泵到水轮机模式的转换时间/s | 90~190 | 90~190 | 25 | |
调频 | 不具备 | 具备 | 具备 | |
旋转备用 | 具备 | 具备 | 具备 | |
功率斜坡变化/负荷跟随 | 不具备 | 具备 | 具备 | |
输出无功/电压支撑 | 具备 | 具备 | 具备 | |
减载(水泵切机) | 具备 | 具备 | 具备 |
Table 6
Comparison of pumped storage based on abandoned mines and excavated tunnels"
比较因素 | 废弃矿井改造的地下抽水蓄能[ | 人工挖掘地下空间的地下抽水蓄能 | |
---|---|---|---|
经济性 | 建造成本 | 矿井关停时间和状况不同,改造和建造成本不可估计,有研究表明其成本约为16838元/kW | 与常规抽水蓄能基本相当,成本为7100~7800元/kW |
运维成本 | 矿井围岩稳定性差,长期高频次流水冲蚀,运维成本高 | 地下致密岩层围岩稳定性好,隧洞建造标准高,运维成本低 | |
技术障碍 | 水头 | 受矿井巷道深度限制 | 不受限制 |
可用空间 | 巷道可用,采空区很难被利用,蓄水空间受限 | 蓄水空间不受限制 | |
密封稳定性 | 矿井存在岩石或覆土塌陷风险,密封性差 | 致密岩层密封和稳定性好 | |
水质 | 矿井中的物质溶于水,污染水体 | 隧洞建造标准高,不污染水体 | |
建造过程 | 材料运输 | 矿井偏远,不易于向矿井以及井下运输大型设备 | 人为选址,隧洞直径大,易于运输大型设备 |
建造难度 | 矿井状态各异,改造复杂,需要大量人工作业,缺乏经验 | 地下深层围岩稳定,硬岩掘进机作业,经验丰富 | |
地理因素 | 水源 | 一般不靠近水源 | 可以依托水源选址灵活 |
输电距离 | 大部分远离负荷中心/可再生能源电厂 | 可选择靠近负荷中心或新能源中心建造 | |
法律及社会因素 | 政策驱动 | 涉及安全生产,相关政策争取较难 | 无相关政策限制 |
示范工程 | 国外有零星几例工程设计规划 | 国外有研究和设计方案 | |
环保问题 | 矿区有水污染的风险 | 无环保生态影响 | |
法律问题 | 矿井产权和安全责任错综复杂,环环相扣,不利于再次利用;矿井责任复杂,即使是关停,封井,也不希望用作抽水蓄能,承担责任风险。 | 无法律限制 |
1 | BLAKERS A, STOCKS M, LU B, et al. Pathway to 100% renewable electricity[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1828-1833. |
2 | 肖立业, 潘教峰. 关于构建以光伏发电加物理储能为主的广域虚拟电厂的建议[J]. 中国科学院院刊, 37(4): 549-558. |
XIAO L Y, PAN J F. Proposal for establishing wide-area virtual power plant based on PV-dominated energy and physical energy storage system[J]. Bulletin of Chinese Academy of Sciences, 37(4): 549-558. | |
3 | The most economical storage technology for long discharge duration pumped hydro storage[EB/OL]. [2023-12-21]. https://www.ge.com/renewableenergy/hydro-power/hydro-pumped-storage. |
4 | Ready and waiting: Opportunities for energy storage[R]. Cornwall insight and DLA piper, 2023. |
5 | CHEN L Y. Method, device and system for storing data in cache in case of power failure: US8156376[P]. 2012-04-10. |
6 | TAM S W, BLOMQUIST C A, KARTSOUNES G T. Underground pumped hydro storage—An overview[J]. Energy Sources,1979, 4(4): 329-351. |
7 | Underground pumped hydro storage and compressed air energy storage: an analysis of regional markets and development potential[R]. United States: Harza Engineering Company, 1977. |
8 | ALLEN R D, DOHERTY T J, KANNBERG L D. Underground pumped hydroelectric storage[R]. United States: Battelle Memorial Institute, 1984. |
9 | BLOMQUIST C A, FRIGO A, DEGNAN J R. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump turbines for operating heads of 500 to 1000 m[R]. United States: Argonne National Laboratory, 1979 |
10 | FRIGO A A, BLOMQUIST C A, DEGNAN J R. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m[R]. United States: Argonne National Laboratory, 1979. |
11 | M·特金, 范莎莎. 加拿大首座具有地下下库的抽水蓄能电站[J]. 水利水电快报, 2012, 33(3): 4-7. |
12 | PEJOVIC S. White paper hydro energy storage[R]. Canada: Ryerson University, 2011. |
13 | KORITAROV V, PLOUSSARD Q, KWON J, et al. A review of technology innovations for pumped storage hydropower[R]. United States: Argonne National Laboratory, 2022 |
14 | CAPABILITIES C I W G. Innovative pumped storage hydropower configurations and uses[R]. United States: International Forum on Pumped Storage Hydropower (IFPSH), 2021. |
15 | 田中国则, 陈天心, 李仲杰. 日本关于地下抽水蓄能电站的研究[J]. 国际水力发电, 2004(1): 37-40. |
16 | WONG I H. An underground pumped storage scheme in the Bukit Timah Granite of Singapore[J]. Tunnelling and Underground Space Technology, 1996, 11(4): 485-489. |
17 | Б.Н.费利德曼, 夏云翔. 莫斯科地下抽水蓄能电站[J]. 水利水电快报, 2006, 27(14): 23-25. |
18 | 中国地质调查局. 中国水文地质图集(1979年版)数据产品[EB/OL]. [2023-12-21]. http://www.geoscience.cn/swdz/swdzt/index.htm. |
19 | 许雨喆. 基于废弃矿井的抽水蓄能电站设计[D]. 淮南: 安徽理工大学, 2019. |
XU Y Z. Design of pumped storage power station based on abandoned mines[D]. Huainan: Anhui University of Science & Technology, 2019. | |
20 | Gravity power[EB/OL]. [2023-12-19]. https://www.gravitypower.net/. |
21 | A new solution for large scale energy storage[EB/OL]. [2023-12-19]. https://gravity-storage.com/. |
22 | Cavern energy storage underground pumped storage hydroelectric technology[EB/OL]. [2023-12-19]. https://cavernenergy.com/technology/. |
23 | Quidnet energy geomechanical pumped storage[EB/OL]. [2023-12-19]. https://quidnetenergy.com/solution/#technologySection. |
24 | SLOCUM A H, FENNELL G E, DUNDAR G, et al. Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept[J]. Proceedings of the IEEE, 2013, 101(4): 906-924. |
25 | HAHN H, HAU D, DICK C, et al. Techno-economic assessment of a subsea energy storage technology for power balancing services[J]. Energy, 2017, 133: 121-127. |
26 | ERNST B, PUCHTA M, DICK C, et al. Storing energy at sea (StEnSea)[C]. 2ndInternational Conference on Large-Scale Grid Integration of Renewable Energy in India, 2019. |
27 | StEnSea—Offshore pumped hydroelectric storage[EB/OL]. [2023-12-19]. https://www.energie.fraunhofer.de/en/events-trade-fairs/allianz-energy-storage_2019/stensea-offshore-pumped-hydroelectric-storage-c1.html. |
28 | Ocean battery utility scale offshore energy storage[EB/OL]. [2023-12-19]. https://oceangrazer.com/. |
29 | 史成雷. 走进江门中微子实验站:在地下700米深处探索宇宙奥秘[EB/OL]. [2023-12-20]. https://www.southcn.com/node_0183de080d/17ad3172bb.shtml. |
30 | 杜江茜. 三个维度 读懂世界最深、最大地下实验室[EB/OL]. [2023-12-20]. https://www.sohu.com/a/742163470_121687414. |
31 | Pumped storage machines reversible pump turbines, ternary sets and motor generators[R]: Voith, 2020. |
32 | Pelton turbines[R]. Voith, 2021. |
33 | Tailor-made solutions for water applications pumps[R]. Voith, 2021. |
34 | HYDROWIRES INITIATIVE. Pumped storage hydropower valuation guidebook[R]. US: United States Department of Energy, 2021. |
35 | GENTNER C. Challenges in the design of pump turbines[R]: Andritz Hydro, 2012. |
36 | 浙江长龙山抽蓄电站6号机转子吊装完成[EB/OL]. [2022-02-09]. https://www.powerchina.cn/art/2022/2/9/art_7445_1314912.html. |
37 | 硬核!哈电集团又一科技成果达到国际领先水平[EB/OL]. [2023-12-21]. https://www.harbin-electric.com/news_view.asp?id=15839. |
38 | 国内首台!700米水头段抽水蓄能电站首台机组投入商业运行[EB/OL]. [2023-12-21]. https://dfem.dongfang.com/info/1240/1127.htm. |
39 | SALLABERGER M. Favourable winds for pumped storage[EB/OL]. [2023-12-21]. https://www.andritz.com/resource/blob/259428/dd569d8a058651434404b62a39c82ca4/favorable-wnd-pumped-storage-hn21-data.pdf. |
40 | 羊卓雍湖抽水蓄能电站[EB/OL]. http://xxfb.mwr.cn/slbk/zmslgc/zmslsnsdzzb/202004/t20200409_1462918.html. |
41 | 中国安能. 羊卓雍湖抽水蓄能电站[EB/OL]. [2023-12-19]. https://www.china-an.cn/index.php/hydropowerEngineering/12548.html. |
42 | XUE J G, HOU X L, ZHOU J L, et al. Obstacle identification for the development of pumped hydro storage using abandoned mines: A novel multi-stage analysis framework[J]. Journal of Energy Storage, 2022, 48: 104022. |
[1] | Dong MO, Qiuwen LI, Yufu LU. Wind solar thermal storage collaborative low-carbon economic dispatch that adapts to wind solar volatility and dynamic peak shaving capacity of energy storage [J]. Energy Storage Science and Technology, 2025, 14(4): 1701-1708. |
[2] | Jufeng LI. Optimization method for energy logistics to enhance the effect of new energy storage and consumption [J]. Energy Storage Science and Technology, 2025, 14(4): 1519-1521. |
[3] | Qiang CUI. Research on dynamic upgrading of new energy industry technology based on big data technology [J]. Energy Storage Science and Technology, 2025, 14(4): 1551-1553. |
[4] | Juan ZHAO, Bingchen LI, Zhe WANG, Fen YUE, Zijia HUI, Xing ZHANG. Evaluation of scenario applicability of new energy storage based on BMW and TOPSIS methods [J]. Energy Storage Science and Technology, 2025, 14(1): 443-455. |
[5] | Wanli LI, Liming LING. Research and innovation in manufacturing technology of new energy vehicles [J]. Energy Storage Science and Technology, 2025, 14(1): 283-285. |
[6] | Lei ZHANG. Research on key issues of laws and regulations in the new energy storage industry [J]. Energy Storage Science and Technology, 2025, 14(1): 464-466. |
[7] | Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications [J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757. |
[8] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
[9] | Shihao HOU, Bo ZHAO, Li ZHANG. Optimization study of a double-layer pumped storage model based on a step penalty mechanism for carbon emissions and new energy abandonment [J]. Energy Storage Science and Technology, 2024, 13(7): 2414-2424. |
[10] | Yi CHEN, Qi QEN, Long ZHAO, Zikun CHEN, Anning WANG. Analysis of China's patent landscape for new energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. |
[11] | Genyuan TIAN. The application and development of cloud computing technology in the intelligent manufacturing of new energy vehicles [J]. Energy Storage Science and Technology, 2024, 13(5): 1748-1750. |
[12] | Zefei LUO, Yuanqing QIN. Research on the Innovation and optimization of smart manufacturing processes for new energy vehicle batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1751-1753. |
[13] | Yu WU, Limin LIU, Hua HUANG. On-line monitoring and in-situ analysis technology of new energy vehicle batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1335-1337. |
[14] | Ran SUN, Jianbo WANG, Yanzhao MA, Xiaoke ZHANG, Huaizhong HU. Adaptive control strategy for primary frequency regulation for new energy storage stations based on reinforcement learning [J]. Energy Storage Science and Technology, 2024, 13(3): 858-869. |
[15] | Xiaying XIAO, Chuanguang FAN, Feng GUO, Tianxin YANG, Dong WANG, Yunhui HUANG. Optimal allocation of energy storage power station based on improved multi-objective particle swarm optimization [J]. Energy Storage Science and Technology, 2024, 13(2): 503-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||