Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4113-4123.doi: 10.19799/j.cnki.2095-4239.2024.0435
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xiuwu WANG1(), Jiangong ZHU1, Dengcheng LIU2, Wanqiang FENG2,3, Shuiping ZHAO3, Haonan LIU1, Haifeng DAI1, Xuezhe WEI1()
Received:
2024-05-16
Revised:
2024-05-28
Online:
2024-11-28
Published:
2024-11-27
Contact:
Xuezhe WEI
E-mail:2010854@tongji.edu.cn;weixzh@tongji.edu.cn
CLC Number:
Xiuwu WANG, Jiangong ZHU, Dengcheng LIU, Wanqiang FENG, Shuiping ZHAO, Haonan LIU, Haifeng DAI, Xuezhe WEI. Non-destructive monitoring and evolutionary characterization of internal temperature in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4113-4123.
Fig. 1
The pouch cell with an integrated functional electrode (IFE), the principle of temperature monitoring and the experimental set-up for the cell. (a) Schematic diagram of the IFE; (b) Photograph of the pouch cell; (c) Cross-section X-ray image of the pouch cell with IFE; (d) Schematic diagram of the optical fiber sensor which use the OFDR technology; (e) Battery in-situ temperature test platform"
Fig. 9
The correlation between current and strain of the highest temperature position within the IFE during the 1C cycling (a) Current curve of the battery before aging; (b) Fiber strain profile at BoL of the battery; (c) Current curve of the battery after aging; (b) Fiber strain profile at EoL of the battery"
1 | ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI: 10.1038/s41467-022-29837-w. |
2 | JUNG H G, JANG M W, HASSOUN J, et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery[J]. Nature Communications, 2011, 2: 516. DOI: 10.1038/ncomms1527. |
3 | WANG X W, ZHU J G, DAI H F, et al. Impedance investigation of silicon/graphite anode during cycling[J]. Batteries, 2023, 9(5): 242. DOI: 10.3390/batteries9050242. |
4 | DING S C, LI Y D, DAI H F, et al. Accurate model parameter identification to boost precise aging prediction of lithium-ion batteries: A review[J]. Advanced Energy Materials, 2023, 13(39): 2301452. DOI: 10.1002/aenm.202301452. |
5 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010. |
6 | HUANG J Q, BOLES S T, TARASCON J M. Sensing as the key to battery lifetime and sustainability[J]. Nature Sustainability, 2022, 5: 194-204. DOI: 10.1038/s41893-022-00859-y. |
7 | WEI Z B, ZHAO J Y, HE H W, et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489: 229462. DOI: 10.1016/j.jpowsour.2021.229462. |
8 | FICHTNER M, EDSTRÖM K, AYERBE E, et al. Rechargeable batteries of the future — The state of the art from a BATTERY 2030+ perspective[J]. Advanced Energy Materials, 2022, 12(17): 2102904. DOI: 10.1002/aenm.202102904. |
9 | HEENAN T M M, MOMBRINI I, LLEWELLYN A, et al. Mapping internal temperatures during high-rate battery applications[J]. Nature, 2023, 617(7961): 507-512. DOI: 10.1038/s41586-023-05913-z. |
10 | LU X B, TARASCON J M, HUANG J Q. Perspective on commercializing smart sensing for batteries[J]. eTransportation, 2022, 14: 100207. DOI: 10.1016/j.etran.2022.100207. |
11 | FURAT O, FINEGAN D P, YANG Z Z, et al. Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology[J]. Energy Storage Materials, 2024, 64: 103036. DOI: 10.1016/j.ensm.2023.103036. |
12 | STURM J, FRIEDRICH S, GENIES S, et al. Experimental analysis of short-circuit scenarios applied to silicon-graphite/nickel-rich lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): 020569. DOI: 10.1149/1945-7111/ac51f3. |
13 | YU Y F, VERGORI E, WORWOOD D, et al. Distribsuted thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 2021, 39: 102560. DOI: 10.1016/j.est.2021.102560. |
14 | LI Y D, WANG W W, YANG X G, et al. A smart Li-ion battery with self-sensing capabilities for enhanced life and safety[J]. Journal of Power Sources, 2022, 546: 231705. DOI: 10.1016/j.jpowsour.2022.231705. |
15 | WANG X W, ZHU J G, WEI X Z, et al. Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing[J]. Energy Storage Materials, 2024, 65: 103160. DOI: 10.1016/j.ensm.2023.103160. |
16 | MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3. |
17 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-683. DOI: 10.1038/s41560-020-0665-y. |
18 | LEE C Y, LEE S J, CHEN Y H, et al. In-situ monitoring of temperature and voltage in lithium-ion battery by embedded flexible micro temperature and voltage sensor[J]. International Journal of Electrochemical Science, 2013, 8(2): 2968-2976. DOI: 10.1016/S1452-3981(23)14365-3. |
19 | LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950. DOI: 10.3390/s111009942. |
20 | YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521: 230957. DOI: 10.1016/j.jpowsour. 2021.230957. |
21 | FLEMING J, AMIETSZAJEW T, CHARMET J, et al. The design and impact of in situ and operando thermal sensing for smart energy storage[J]. Journal of Energy Storage, 2019, 22: 36-43. DOI: 10.1016/j.est.2019.01.026. |
22 | WANG X Y, LI R K, DAI H F, et al. A novel dualtime scalelife prediction method for lithium-ion batteries considering effects of temperature and state of charge[J]. International Journal of Energy Research, 2021, 45(10): 14692-14709. DOI: 10.1002/er.6746. |
23 | 狄云, 周正柱, 党会鸿, 等. 基于ECM的电芯电-热耦合建模与验证[J]. 储能科学与技术, 2023, 12(8): 2638-2648. DOI: 10.19799/j.cnki.2095-4239.2023.0080. |
DI Y, ZHOU Z Z, DANG H H, et al. Modeling and verification of electric-thermal coupling in batteries based on ECM[J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. DOI: 10.19799/j.cnki.2095-4239.2023.0080. | |
24 | WANG X W, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209: 523-534. DOI: 10.1016/j.compstruct. 2018.11.004. |
25 | QIN N, JIN L M, XING G G, et al. Decoupling accurate electrochemical behaviors for high-capacity electrodes via reviving three-electrode vehicles[J]. Advanced Energy Materials, 2023, 13(11): 2204077. DOI: 10.1002/aenm.202204077. |
26 | 周星. 基于阻抗的锂离子电池动态建模、全频表征与快速诊断[D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu. 2019.000410. |
ZHOU X. Dynamic modeling, full-frequency characterization and rapid diagnosis of lithium-ion battery based on impedance[D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000410. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[15] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||