Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4102-4112.doi: 10.19799/j.cnki.2095-4239.2024.0509
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yu GUO1,2,3,4(), Yiwei WANG1,3,4, Peng PENG1,3,4, Yinfei WANG1,3,4,5, Yishu QIU1,3,4(), Fangming JIANG1,3,4()
Received:
2024-06-06
Revised:
2024-08-07
Online:
2024-11-28
Published:
2024-11-27
Contact:
Yishu QIU, Fangming JIANG
E-mail:shiyanguo@mail.ustc.edu.cn;qiuys@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn
CLC Number:
Yu GUO, Yiwei WANG, Peng PENG, Yinfei WANG, Yishu QIU, Fangming JIANG. Fault diagnosis of micro-internal short circuits in lithium-ion battery using the isolated forest algorithm[J]. Energy Storage Science and Technology, 2024, 13(11): 4102-4112.
Tbale 3 Algorithm effectiveness index of the series connected LIBs module"
工况 | 短路阻值 | 精准率 | 召回率 | 准确率 |
---|---|---|---|---|
循环充放电工况 | Risc=300 Ω | 0.9583 | 0.9547 | 0.9855 |
Risc=510 Ω | 0.9151 | 0.9151 | 0.9717 | |
Risc=710 Ω | 0.8634 | 0.8603 | 0.9540 | |
Risc=1000 Ω | 0.7490 | 0.7608 | 0.9176 | |
Risc=2000 Ω | 0.5676 | 0.5787 | 0.8563 | |
Risc=3000 Ω | 0.4205 | 0.4370 | 0.8058 | |
Risc=4000 Ω | 0.0996 | 0.1055 | 0.6921 | |
DST工况 | Risc=100 Ω | 1 | 1 | 1 |
Risc=300 Ω | 0.8671 | 0.8671 | 0.9557 |
1 | MOY K, LEE S B, HARRIS S, et al. Design and validation of synthetic duty cycles for grid energy storage dispatch using lithium-ion batteries[J]. Advances in Applied Energy, 2021, 4: 100065. DOI: 10.1016/j.adapen.2021.100065. |
2 | ZHAO G L, BAKER J. Effects on environmental impacts of introducing electric vehicle batteries as storage - A case study of the United Kingdom[J]. Energy Strategy Reviews, 2022, 40: 100819. DOI: 10.1016/j.esr.2022.100819. |
3 | HU X J, GAO F F, XIAO Y, et al. Advancements in the safety of Lithium-Ion Battery: The Trigger, consequence and mitigation method of thermal runaway[J]. Chemical Engineering Journal, 2024, 481: 148450. DOI: 10.1016/j.cej.2023.148450. |
4 | ZHOU G, NIU C X, KONG Y, et al. Research on stimulation responsive electrolytes from the perspective of thermal runaway in lithium-ion batteries: A review[J]. Fuel, 2024, 368: 131599. DOI: 10.1016/j.fuel.2024.131599. |
5 | WU X G, WEI Z X, WEN T, et al. Research on short-circuit fault-diagnosis strategy of lithium-ion battery in an energy-storage system based on voltage cosine similarity[J]. Journal of Energy Storage, 2023, 71: 108012. DOI: 10.1016/j.est.2023.108012. |
6 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. DOI: 10.1016/j.jpowsour.2015.06.087. |
7 | LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. DOI: 10.1016/j.ensm.2020.11.026. |
8 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
9 | LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. December 15-19, 2008, Pisa, Italy. IEEE, 2008: 413-422. DOI: 10.1109/ICDM. 2008.17. |
10 | LIU T, ZHOU Z, YANG L J. Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J]. Neurocomputing, 2024, 581: 127525. DOI: 10.1016/j.neucom. 2024.127525. |
11 | 程贤福, 马晓冬, 曾建邦, 等. 基于孤立森林算法的动力电池不一致单体识别与预警方法[J]. 华东交通大学学报, 2023, 40(2): 95-102. DOI: 10.16749/j.cnki.jecjtu.2023.02.002. |
CHENG X F, MA X D, ZENG J B, et al. Inconsistent monomer identification and warning method for power batteries based on isolated forests[J]. Journal of East China Jiaotong University, 2023, 40(2): 95-102. DOI: 10.16749/j.cnki.jecjtu.2023.02.002. | |
12 | JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: 104177. DOI: 10.1016/j.est.2022.104177. |
13 | 杨双齐. 基于机器学习的舰船轮机设备多发故障信号监测[J]. 舰船科学技术, 2023, 45(16): 100-103. DOI: 10.3404/j.issn.1672-7649.2023.16.020. |
YANG S Q. Machine learning based monitoring of multiple fault signals in marine engine equipment[J]. Ship Science and Technology, 2023, 45(16): 100-103. DOI: 10.3404/j.issn.1672-7649.2023.16.020. | |
14 | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. DOI: 10.48550/arXiv.1201.0490. |
15 | 郗婕, 傅微. 基于机器学习的流域尺度森林火灾灾害风险预测[J]. 自然灾害学报, 2024, 33(1): 89-98. DOI: 10.13577/j.jnd.2024.0108. |
XI J, FU W. Watershed-scale forest fire risk prediction based on machine learning[J]. Journal of Natural Disasters, 2024, 33(1): 89-98. DOI: 10.13577/j.jnd.2024.0108. | |
16 | QIAO D D, WANG X Y, LAI X, et al. Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method[J]. Energy, 2022, 243: 123082. DOI: 10.1016/j.energy.2021.123082. |
17 | MA M N, DUAN Q L, LI X Y, et al. Fault diagnosis of external soft-short circuit for series connected lithium-ion battery pack based on modified dual extended Kalman filter[J]. Journal of Energy Storage, 2021, 41: 102902. DOI: 10.1016/j.est.2021.102902. |
18 | 王君瑞, 吴新举, 赵东琦, 等. 基于 WOA-VMD 与 PSO-SVM 的锂离子电池内短路故障诊断方法[J]. 工程科学学报, 2023, 45(12): 2162-2172. DOI:10.13374/j.issn2095-9389.2022.10.04.004. |
WANG J R,WU X J,ZHAO D Q, et al. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering, 2023, 45(12): 2162-2172. DOI:10.13374/j.issn2095-9389. 2022. 10.04.004. |
[1] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[2] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[3] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[4] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[5] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[6] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[7] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[8] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[9] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[10] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[11] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[12] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[13] | Daxing ZHANG, Zerong HUANG, Xiangdong WANG, Yankai Wang, Bingzi CAI, Haoyu YUAN, Mingming TIAN, Yingping YUAN, Yuan CAO. Balancing control strategy for cascaded utilization of battery systems using power converters [J]. Energy Storage Science and Technology, 2024, 13(5): 1635-1642. |
[14] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[15] | Yan ZHANG, Zheng YUAN. Microelectromechanical control technology for compressed air energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1551-1553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||