Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4133-4142.doi: 10.19799/j.cnki.2095-4239.2024.0447
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Dengchao HAN(), Yuanxiang PEI, Zhaoyang LIU, Songtao LIU, Huaibin WANG(), Junli SUN, Yonglu WANG, Yu HAN
Received:
2024-05-22
Revised:
2024-05-30
Online:
2024-11-28
Published:
2024-11-27
Contact:
Huaibin WANG
E-mail:1301388091@qq.com;wanghuaibin@cppu.edu.cn
CLC Number:
Dengchao HAN, Yuanxiang PEI, Zhaoyang LIU, Songtao LIU, Huaibin WANG, Junli SUN, Yonglu WANG, Yu HAN. Thermal runaway propagation characteristics and residue analysis of NCM811 lithium-ion batteries in confined spaces[J]. Energy Storage Science and Technology, 2024, 13(11): 4133-4142.
1 | SONG L B, ZHENG Y H, XIAO Z L, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30-46. DOI: 10.1007/s11664-021-09281-0. |
2 | WANG Y, FENG X N, HUANG W S, et al. Challenges and opportunities to mitigate the catastrophic thermal runaway of high-energy batteries[J]. Advanced Energy Materials, 2023, 13(15): 2203841. DOI: 10.1002/aenm.202203841. |
3 | 山彤欣, 王震坡, 洪吉超, 等. 新能源汽车动力电池 "机械滥用-热失控" 及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252-275. DOI: 10.3901/JME.2022.14.252. |
SHAN T X, WANG Z P, HONG J C, et al. Overview of "mechanical abuse-thermal runaway" of electric vehicle power battery and its safety prevention and control technology[J]. Journal of Mechanical Engineering, 2022, 58(14): 252-275. DOI: 10.3901/JME.2022.14.252. | |
4 | 王淮斌, 李阳, 王钦正, 等. 电动汽车事故致灾机理及调查方法[J]. 储能科学与技术, 2021, 10(2): 544-557. DOI: 10.19799/j.cnki.2095-4239.2020.0325. |
WANG H B, LI Y, WANG Q Z, et al. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies[J]. Energy Storage Science and Technology, 2021, 10(2): 544-557. DOI: 10.19799/j.cnki.2095-4239.2020.0325. | |
5 | JIANG L L, CHENG X B, PENG H J, et al. Carbon materials for traffic power battery[J]. eTransportation, 2019, 2: 100033. DOI: 10.1016/j.etran.2019.100033. |
6 | HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. DOI: 10.1016/j.etran. 2019.100005. |
7 | LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. DOI: 10.1016/j.ensm.2019.05.019. |
8 | YANG G, XIE X, MENG X, et al. Active electrode materials for lithium-ion battery. Ferroelectrics, 2023, 607(1), 96–105. https://doi.org/10.1080/00150193.2023.2198376 |
9 | LOPATA J S, GARRICK T R, WANG F K, et al. Dynamic multi-dimensional numerical transport study of lithium-ion battery active material microstructures for automotive applications[J]. Journal of the Electrochemical Society, 2023. DOI: 10.1149/1945-7111/acbc9e. |
10 | LI S, LIU Y J, XU D, et al. Conjugated polycopper phthalocyanine as the anode-active material with high specific capacity for lithium-organic batteries[J]. Materials Letters, 2023, 333: 133682. DOI: 10.1016/j.matlet.2022.133682. |
11 | LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. DOI: 10.1016/j.est.2020.101714. |
12 | 王淮斌, 李阳, 王钦正, 等. 三元锂离子动力电池热失控及蔓延特性实验研究[J]. 工程科学学报, 2021, 43(5): 663-675. DOI: 10.13374/j.issn2095-9389.2020.10.27.002. |
WANG H B, LI Y, WANG Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. DOI: 10.13374/j.issn2095-9389.2020.10.27.002. | |
13 | WANG H B, XU H, ZHAO Z Y, et al. An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 211: 118418. DOI: 10.1016/j.applthermaleng.2022.118418. |
14 | ZHOU Z Z, LI M Y, ZHOU X D, et al. Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery[J]. Applied Energy, 2023, 349: 121690. DOI: 10.1016/j.apenergy.2023.121690. |
15 | ZHU M H, ZHANG S Y, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, 72: 108380. DOI: 10.1016/j.est. 2023. 108380. |
16 | SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. DOI: 10.1016/j.psep. 2022. 12.082. |
17 | LIU J L, ZHANG Y, ZHOU L F, et al. Influencing factors of lithium-ion battery thermal runaway in confined space[J]. Journal of Energy Storage, 2023, 73: 109125. DOI: 10.1016/j.est. 2023. 109125. |
18 | OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. DOI: 10.1016/j.jpowsour. 2015.01.051. |
19 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
20 | GAO T F, WANG Z R, CHEN S C, et al. Hazardous characteristics of charge and discharge of lithium-ion batteries under adiabatic environment and hot environment[J]. International Journal of Heat and Mass Transfer, 2019, 141: 419-431. DOI: 10.1016/j.ijheatmasstransfer.2019.06.075. |
21 | WANG Y, GAO Q, WANG G H, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. DOI: 10.1002/er.4158. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[15] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||