Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1918-1927.doi: 10.19799/j.cnki.2095-4239.2024.1049
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yingjian CHEN1(), Shang WU1, Yuancheng CAO2, Baoshuai DU3, Zhenxing WANG1, Zhongwen OUYANG1, Shun TANG2(
)
Received:
2024-11-08
Revised:
2025-01-03
Online:
2025-05-28
Published:
2025-05-21
Contact:
Shun TANG
E-mail:yjchen0001@hust.edu.cn;shuntang@hust.edu.cn
CLC Number:
Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927.
Table 1
Comparison of different magnetic separation recovery processes"
回收方法 | 适用范围 | 环境影响 | 工艺特点 | 经济成本 | 参考文献 |
---|---|---|---|---|---|
高梯度磁选 | 通过强磁场分离弱磁性和非磁性物质,适合分离含Co、Ni等顺磁性材料,但对非磁性材料效果有限 | 物理分离过程,无废水、废气排放,对环境友好。能耗高,有噪声污染 | 分选精度高,但回收率易受粒径和形状影响 | 投资成本高,能耗较大 | [ |
湿式磁选 | 该方法通常包括氧化、还原、沉淀等物理化学处理步骤,用于改变物料的磁性,随后结合磁选法进行分离。可用于回收弱磁性或非磁性材料以及复杂的废料组合 | 回收过程中要消耗大量化学试剂,并且会产生废水、废气等污染物 | 回收率高,不受物料粒径、形状等物理特性的影响 | 成本和运行成本适中,但废水处理费用和设备的耐腐蚀性维护成本较高 | [ |
涡流分选 | 基于电磁感应,通过涡流力分离高导电性金属和低导电性材料,适合回收正负极材料中的Al和Cu杂质 | 属于物理分离方法,无化学试剂参与,对环境污染小,能耗高,有噪声污染 | 通过永磁体产生交变磁场,磁场大小有限,对于粒径较小的物料分选效果不明显 | 成本较低,自动化程度高,适合大规模回收作业 | [ |
1 | BISWAL B K, ZHANG B, THI MINH TRAN P, et al. Recycling of spent lithium-ion batteries for a sustainable future: Recent advancements[J]. Chemical Society Reviews, 2024, 53(11): 5552-5592. DOI: 10.1039/D3CS00898C. |
2 | RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives[J]. Journal of Hazardous Materials, 2022, 429: 128312. DOI: 10.1016/j.jhazmat.2022.128312. |
3 | 时玮, 张言茹, 陈大分, 等. 锰酸锂动力电池寿命测试方法[J]. 汽车工程, 2015, 37(1): 67-71, 119. DOI: 10.19562/j.chinasae.qcgc. 2015.01.012. |
SHI W, ZHANG Y R, CHEN D F, et al. Lifespan test method for LiMn2O4 traction batteries[J]. Automotive Engineering, 2015, 37(1): 67-71, 119. DOI: 10.19562/j.chinasae.qcgc.2015.01.012. | |
4 | 李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3): 349-366. DOI: 10.13373/j.cnki.cjrm.XY20020020. |
LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: A review[J]. Chinese Journal of Rare Metals, 2022, 46(3): 349-366. DOI: 10.13373/j.cnki.cjrm.XY20020020. | |
5 | 王洋洋. 磷酸铁锂电池荷电状态影响因素的研究[J]. 芜湖职业技术学院学报, 2022, 24(4): 72-75. |
WANG Y Y. Research on the factors influencing the state of charge of lithium iron phosphate battery[J]. Journal of Wuhu Institute of Technology, 2022, 24(4): 72-75. | |
6 | 王翠. 磷酸铁锂与石墨电极活性材料的高效浮选分离基础研究[D]. 长沙: 中南大学, 2023. |
WANG C. Fundamental study on high-efficiency flotation separation of lithium iron phosphate and graphite electrode materials [D]. Changsha: Central South University, 2023. | |
7 | SHIN S M, KIM N H, SOHN J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181. DOI: 10.1016/j.hydromet.2005.06.004. |
8 | ZHANG T, HE Y Q, WANG F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques[J]. Waste Management, 2014, 34(6): 1051-1058. DOI: 10.1016/j.wasman.2014.01.002. |
9 | 江友周, 王宜, 李淑珍, 等. 退役锂电池有价金属湿化学分离技术研究进展[J]. 化学工业与工程, 2021, 38(6): 23-33. DOI: 10.13353/j.issn.1004.9533.20210822. |
JIANG Y Z, WANG Y, LI S Z, et al. Progress in hydrometallurgical separation and recovery of valuable metals from spent lithium-ion batteries[J]. Chemical Industry and Engineering, 2021, 38(6): 23-33. DOI: 10.13353/j.issn.1004.9533.20210822. | |
10 | YIN R S, HU S H, YANG Y. Life cycle inventories of the commonly used materials for lithium-ion batteries in China[J]. Journal of Cleaner Production, 2019, 227: 960-971. DOI: 10. 1016/j.jclepro.2019.04.186. |
11 | XIONG S Q, JI J P, MA X M. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles[J]. Waste Management, 2020, 102: 579-586. DOI: 10. 1016/j.wasman.2019.11.013. |
12 | 甘涛. 废旧锂离子电池电极材料磁性分离机制和工艺研究[D]. 广州: 广东工业大学, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001249. |
GAN T. Study on magnetic separation mechanism and technology of electrode materials for waste lithium ion batteries[D]. Guangzhou: Guangdong University of Technology, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001249. | |
13 | HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. DOI: 10. 1016/j.wasman.2015.08.035. |
14 | HAGELÜKEN C. Recycling of electronic scrap at umicore's integrated metals smelter and refinery[J]. World of Metallurgy - ERZMETALL, 2006, 59(3): 152-161. |
15 | ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. DOI: 10.1016/j.wasman. 2019.11.045. |
16 | AN L. Recycling of spent lithium-ion batteries: processing methods and environmental impacts[M]. Cham: Springer, 2019. |
17 | CHEN X P, MA H R, LUO C B, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326: 77-86. DOI: 10.1016/j.jhazmat.2016.12.021. |
18 | PORVALI A, AALTONEN M, OJANEN S, et al. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste[J]. Resources, Conservation and Recycling, 2019, 142: 257-266. DOI: 10.1016/j.resconrec.2018.11.023. |
19 | 赵嘉艺, 王星星, 祁磊, 等. 高梯度磁选理论与技术进展[J]. 矿产保护与利用, 2024, 44(3): 117-126. DOI: 10.13779/j.cnki.issn1001-0076.2024.03.013. |
ZHAO J Y, WANG X X, QI L, et al. Progress in the theory and technology of highgradient magnetic separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 117-126. DOI: 10.13779/j.cnki.issn1001-0076.2024.03.013. | |
20 | YAMAJI Y, DODBIBA G, MATSUO S, et al. A novel flow sheet for processing of used lithium-ion batteries for recycling[J]. Resources Processing, 2011, 58(1): 9-13. DOI: 10.4144/rpsj.58.9. |
21 | HU Z C, LIU J G, GAN T, et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries[J]. Separation and Purification Technology, 2022, 297: 121486. DOI: 10.1016/j.seppur.2022.121486. |
22 | 耿洪臣, 冯泉, 郭小飞. 磁选技术的现状与发展趋势[J]. 磁性材料及器件, 2010, 41(3): 10-13, 25. DOI: 10.3969/j.issn.1001-3830. 2010.03.002. |
GENG H C, FENG Q, GUO X F. Present status and development trend of magnetic separation technology[J]. Journal of Magnetic Materials and Devices, 2010, 41(3): 10-13, 25. DOI: 10.3969/j.issn.1001-3830.2010.03.002. | |
23 | 马苏杰. 我国磁选设备的现状和发展[J]. 山东工业技术, 2018(4): 65. DOI: 10.16640/j.cnki.37-1222/t.2018.04.058. |
MA S J. The Present Situation and Development of magnetic separation equipment in China[J]. Shandong Industrial Technology, 2018(4): 65. DOI: 10.16640/j.cnki.37-1222/t. 2018. 04.058. | |
24 | 甘涛, 宋卫锋, 刘勇, 等. 废旧电池电极材料的磁性分离机制及其提纯工艺[J]. 中国有色金属学报, 2021, 31(12): 3664-3674. |
GAN T, SONG W F, LIU Y, et al. Magnetic separation mechanism and purification process of spent battery electrode materials[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3664-3674. | |
25 | HUANG Z, LIN M, QIU R J, et al. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and waterflow-magnetic separation[J]. Resources, Conservation and Recycling, 2021, 164: 105172. DOI: 10.1016/j.resconrec.2020.105172. |
26 | LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. DOI: 10.1016/j.jhazmat.2015.09.050. |
27 | HUANG Z, ZHU J, QIU R J, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229: 1148-1157. DOI: 10.1016/j.jclepro.2019.05.049. |
28 | QIU R J, HUANG Z, ZHENG J Y, et al. Energy models and the process of fluid-magnetic separation for recovering cobalt micro-particles from vacuum reduction products of spent lithium ion batteries[J]. Journal of Cleaner Production, 2021, 279: 123230. DOI: 10.1016/j.jclepro.2020.123230. |
29 | HUANG Z, LIU F, MAKUZA B, et al. Metal reclamation from spent lithium-ion battery cathode materials: Directional conversion of metals based on hydrogen reduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 756-765. DOI: 10.1021/acssuschemeng.1c05721. |
30 | SMITH Y R, NAGEL J R, RAJAMANI R K. Eddy current separation for recovery of non-ferrous metallic particles: A comprehensive review[J]. Minerals Engineering, 2019, 133: 149-159. DOI: 10.1016/j.mineng.2018.12.025. |
31 | REM P C, LEEST P A, VAN DEN AKKER A J. A model for eddy current separation[J]. International Journal of Mineral Processing, 1997, 49(3/4): 193-200. DOI: 10.1016/S0301-7516(96)00045-2. |
32 | RUAN J J, QIAN Y M, XU Z M. Environment-friendly technology for recovering nonferrous metals from e-waste: Eddy current separation[J]. Resources, Conservation and Recycling, 2014, 87: 109-116. DOI: 10.1016/j.resconrec.2014.03.017. |
33 | BI H J, ZHU H B, ZU L, et al. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries[J]. Waste Management & Research, 2019, 37(12): 1217-1228. DOI: 10.1177/0734242X19871610. |
34 | BI H J, ZHU H B, ZU L, et al. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries[J]. Waste Management, 2019, 100: 1-9. DOI: 10.1016/j.wasman.2019.08.041. |
35 | DHOLU N, NAGEL J R, COHRS D, et al. Eddy current separation of nonferrous metals using a variable-frequency electromagnet[J]. KONA Powder and Particle Journal, 2017, 34: 241-247. DOI: 10.14356/kona.2017012. |
36 | BAI Y X, ZHU H B, ZU L, et al. Eddy current separation of broken lithium battery products in consideration of the shape factor[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 2262-2275. DOI: 10.1007/s10163-023-01681-0. |
[1] | Wei FENG. Research progress on the failure mechanism and recycling of waste lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1928-1930. |
[2] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[3] | Feifei DONG, Kuankuan WEI. Research on the recycling of green building energy [J]. Energy Storage Science and Technology, 2024, 13(3): 949-951. |
[4] | Hai WANG, Yuhua BIAN, Jiadong WANG, Zhaoyang LIU, Jie ZHANG, Jian YAO, Xuanwen GAO, Zhaomeng LIU, Wenbin LUO. Retired lithium battery recycling and battery-grade lithium carbonate preparation [J]. Energy Storage Science and Technology, 2023, 12(5): 1453-1460. |
[5] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[6] | Xiaoping KANG, Huihui NIE, Min GAO, Fengbiao WU. Research on carbon emission of electric vehicle in its life cycle [J]. Energy Storage Science and Technology, 2023, 12(3): 976-984. |
[7] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[8] | Danyang ZHAO, Xiang ZHANG, Fan XU, Yanwei SUI. Progress of resource recovery of retired ternary lithium-ion battery cathode materials [J]. Energy Storage Science and Technology, 2023, 12(10): 3087-3098. |
[9] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[10] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[11] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[12] | Linlin LI, Yujie WANG, Yifei MEN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Research progress of inorganic acids in hydrometallurgical recovery technology [J]. Energy Storage Science and Technology, 2021, 10(1): 68-76. |
[13] | Linlin LI, Linjuan CAO, Yongxiong MAI, Yifei MEN, Wei YANG, Shengzhou CHEN. Research progress of the organic acid of the hydrometallurgical recovery technology in spent Li ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1641-1650. |
[14] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[15] | LIU Ping, LI Shusheng, LI Guangjun, DAI Xingjian. Experimental research on DC power recycling system in the subway based on the magnetically suspended energy-storaged flywheel array [J]. Energy Storage Science and Technology, 2020, 9(3): 910-917. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||