Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2813-2819.doi: 10.19799/j.cnki.2095-4239.2025.0024
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Yongzhao LI(), Tianyi MA, Han YOU, Xiaobo LI(
), Ronggui YANG(
)
Received:
2025-01-06
Revised:
2025-01-26
Online:
2025-07-28
Published:
2025-07-11
Contact:
Xiaobo LI, Ronggui YANG
E-mail:1622174566@qq.com;xbli35@hust.edu.cn;ronggui@hust.edu.cn
CLC Number:
Yongzhao LI, Tianyi MA, Han YOU, Xiaobo LI, Ronggui YANG. High-temperature stability of solar salt and Hitec under air atmosphere[J]. Energy Storage Science and Technology, 2025, 14(7): 2813-2819.
Table 1
Experimental instruments and parameters"
仪器名称 | 型号 | 技术参数 |
---|---|---|
电子分析天平 | SQF | 最大秤量:120 g 最小秤量:1 mg 分度值:0.01 mg |
马弗炉 | XD 322-12 | 功率:4 kW 升温速率:≤10 ℃/min 温控精度:±1 ℃ |
同步热分析仪 | SDT-650 | 升温速率:0.1~100 ℃/min 动态温度精度:±0.5 ℃ 称重精度:±1% |
离子色谱仪 | 881 compact IC pro | 最小检出限:0.04 mg/L 流量精度:<0.2% |
自动电位滴定仪 | ZDJ-5B | 滴定体积精度:0.01 mL 电位分辨率:0.01 mV 最小检出限:20 ppm(1 ppm=10-6) |
[1] | 何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2. |
HE Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2. | |
[2] | CARABALLO A, GALÁN-CASADO S, CABALLERO Á, et al. Molten salts for sensible thermal energy storage: A review and an energy performance analysis[J]. Energies, 2021, 14(4): 1197. DOI: 10.3390/en14041197. |
[3] | WALCZAK M, PINEDA F, FERNÁNDEZ Á G, et al. Materials corrosion for thermal energy storage systems in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2018, 86: 22-44. DOI: 10.1016/j.rser.2018.01.010. |
[4] | MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management, 2018, 167: 156-164. DOI: 10.1016/j.enconman.2018.04.100. |
[5] | BAUER T, STEINMANN W D, LAING D, et al. Thermal energy storage materials and systems[M]. Annual Review of Heat Transfer, 2012: 131-177. |
[6] | BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of solar salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. DOI: 10.1016/j.apenergy.2013.04.072. |
[7] | BAUER T, ODENTHAL C, BONK A. Molten salt storage for power generation[J]. Chemie Ingenieur Technik, 2021, 93(4): 534-546. DOI: 10.1002/cite.202000137. |
[8] | BOEREMA N, MORRISON G, TAYLOR R, et al. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems[J]. Solar Energy, 2012, 86(9): 2293-2305. DOI: 10.1016/j.solener.2012.05.001. |
[9] | PENG Q, YANG X X, DING J, et al. Design of new molten salt thermal energy storage material for solar thermal power plant[J]. Applied Energy, 2013, 112: 682-689. DOI: 10.1016/j.apenergy. 2012.10.048. |
[10] | SAU S, CORSARO N, CRESCENZI T, et al. Techno-economic comparison between CSP plants presenting two different heat transfer fluids[J]. Applied Energy, 2016, 168: 96-109. DOI: 10.1016/j.apenergy.2016.01.066. |
[11] | NISSEN D A, MEEKER D E. Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts[J]. Inorganic Chemistry, 1983, 22(5): 716-721. DOI: 10.1021/ic00147a004. |
[12] | KUNKEL S, KLASING F, HANKE A, et al. Concentrating solar power at higher limits: First studies on molten nitrate salts at 600 ℃ in a 100 kg-scale hot tank[J]. Solar Energy Materials and Solar Cells, 2023, 258: 112412. DOI: 10.1016/j.solmat.2023. 112412. |
[13] | SÖTZ V A, BONK A, FORSTNER J, et al. Microkinetics of the reaction NO3 -⇌NO2 -+0.5O2 in molten sodium nitrate and potassium nitrate salt[J]. Thermochimica Acta, 2019, 678: 178301. DOI: 10.1016/j.tca.2019.178301. |
[14] | BONK A, BRAUN M, SÖTZ V A, et al. Solar salt—Pushing an old material for energy storage to a new limit[J]. Applied Energy, 2020, 262: 114535. DOI: 10.1016/j.apenergy.2020.114535. |
[15] | STEINBRECHER J, BRAUN M, BAUER T, et al. Solar salt above 600 ℃: Impact of experimental design on thermodynamic stability results[J]. Energies, 2023, 16(14): 5241. DOI: 10.3390/en16145241. |
[16] | STEINBRECHER J, BONK A, SÖTZ V A, et al. Investigation of regeneration mechanisms of aged solar salt[J]. Materials, 2021, 14(19): 5664. DOI: 10.3390/ma14195664. |
[17] | WANG H Y, LI J L, ZHONG Y, et al. Novel wide-working-temperature NaNO3-KNO3-Na2SO4 molten salt for solar thermal energy storage[J]. Molecules, 2024, 29(10): 2328. DOI: 10.3390/molecules29102328. |
[18] | WU Y T, LI Y, REN N, et al. Experimental study on the thermal stability of a new molten salt with low melting point for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2018, 176: 181-189. DOI: 10.1016/j.solmat.2017.12.001. |
[19] | BONK A, BRAUN M, HANKE A, et al. Enhancing the thermal stability of solar salt up to 600 ℃ in extended lab-scale experiments[C]// Solarpaces 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2020: 190003. DOI: 10.1063/5.0029151. |
[20] | SÖTZ V A, BONK A, BAUER T. With a view to elevated operating temperatures in thermal energy storage—Reaction chemistry of solar salt up to 630 ℃[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110577. DOI: 10.1016/j.solmat.2020.110577. |
[21] | OLIVARES R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9): 2576-2583. DOI: 10.1016/j.solener. 2012.05.025. |
[22] | AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al. Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HITEC molten salt for concentrated solar power applications[J]. International Communications in Heat and Mass Transfer, 2022, 132: 105898. DOI: 10.1016/j.icheatmasstransfer.2022.105898. |
[23] | VILLADA C, BONK A, BAUER T, et al. High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres[J]. Applied Energy, 2018, 226: 107-115. DOI: 10.1016/j.apenergy.2018.05.101. |
[1] | Taotao LIU, Shaopeng ZHANG, Yifei WANG, Xipeng LIN. Organic porous shape-stabilized composite phase change materials for thermal energy storage: A review [J]. Energy Storage Science and Technology, 2025, 14(7): 2635-2653. |
[2] | Bin WANG, Jinkai LIU, Xiaoxia JIANG, Ning BAI, Yuanwei LU. Optimization of flexibile peak shaving system of coal-fired unit aided by molten salt heat storage based on economic analysis [J]. Energy Storage Science and Technology, 2025, 14(7): 2729-2737. |
[3] | Jinzhu ZHANG, Lingran MENG, Yuting WU, Tianqing SHI, Yongqiang SHANG, Ruiping ZHI, Wenzhen WEI. Phase diagram analysis of binary and ternary salts of lithium, sodium and potassium nitroxides [J]. Energy Storage Science and Technology, 2025, 14(6): 2515-2523. |
[4] | Kangbin LIU, Haichuan SHEN, Guanjia ZHAO, Wentao XIE, Weiyao XUN. Experimental and numerical study of self-pressurized ultrahigh-pressure hydrothermal energy storage [J]. Energy Storage Science and Technology, 2025, 14(6): 2352-2361. |
[5] | Xinlong HAN, Yuanwei LU, Yancheng MA, Yuting WU, Cancan ZHANG. Research on the dynamic corrosion characteristics of ternary nitrocarbonate acid mixed molten salt at high decomposition temperatures [J]. Energy Storage Science and Technology, 2025, 14(4): 1386-1393. |
[6] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
[7] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[8] | Rongyu XU, Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI, Yuting WU. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-medium-temperature thermal energy storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459. |
[9] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[10] | Yujie ZHANG, Jiangyun CHEN, Jianqiang LI, Yanjun DAI. China Thermal Energy Storage Industry Development Report (2024)—Industry technologies, development status, and model projects [J]. Energy Storage Science and Technology, 2024, 13(12): 4452-4463. |
[11] | Junsheng FENG, Yaru YAN, Lu WANG, Liang ZHAO, Hui DONG. Thermodynamic performance study of a pumped thermal energy storage system coupled with low-temperature waste heat recovery [J]. Energy Storage Science and Technology, 2024, 13(12): 4384-4395. |
[12] | Chao YU, Gechuanqi PAN. Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt [J]. Energy Storage Science and Technology, 2024, 13(12): 4368-4380. |
[13] | Dalin WEI, Lin ZHU, Xiang LING, Feng JIANG. Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4421-4435. |
[14] | Heng LI, Zhijuan WANG. Research on performance evaluation and optimization strategies of thermal energy storage systems based on big data analysis [J]. Energy Storage Science and Technology, 2024, 13(12): 4381-4383. |
[15] | Junsheng FENG, Yaru YAN, Liang ZHAO, Hui DONG. Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(11): 3930-3938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||