Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3447-3462.doi: 10.19799/j.cnki.2095-4239.2025.0258
• Energy Storage System and Engineering • Previous Articles Next Articles
Siwen LI1,2(), Yilin ZHU2,3, Yujie XU1,2,3, Xuezhi ZHOU1,2,3, Zhengyang FU2,3, Jiajun WU2,3, Ruoning HAN2,3, Liu CHENG1,2,3, Hualiang ZHANG1,2,3, Haisheng CHEN1,2,3(
)
Received:
2025-03-24
Revised:
2025-05-04
Online:
2025-09-28
Published:
2025-09-05
Contact:
Yujie XU, Haisheng CHEN
E-mail:17851006087@163.com;chen_hs@mail.etp.ac.cn
CLC Number:
Siwen LI, Yilin ZHU, Yujie XU, Xuezhi ZHOU, Zhengyang FU, Jiajun WU, Ruoning HAN, Liu CHENG, Hualiang ZHANG, Haisheng CHEN. Three-objective optimization and emergy analysis of integrated energy system under time-of-use flexible operation strategy[J]. Energy Storage Science and Technology, 2025, 14(9): 3447-3462.
Table 1
Emergy transformation ratio[19]"
代号 | 名称 | 能值转换率 |
---|---|---|
R1 | 太阳辐射 | 1.00×106 sej/MJ |
R2 | 风能 | 5.89×107 sej/MJ |
R3 | 氧气 | 5.16×1010 sej/kg |
R4 | 水 | 6.64×108 sej/kg |
N1 | 天然气 | 7.73×107 sej/MJ |
F0 | 购电 | 4.325×1011 sej/CNY |
F1 | 光伏成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F2 | 风机成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F3 | 电储能系统成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F4 | 吸收式制冷成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F5 | 燃气轮机成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F6 | 燃气锅炉成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F7 | 电锅炉成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F8 | 电制冷成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F9 | 热储能系统成本(投资、运维、人力) | 4.325×1011 sej/CNY |
Table 2
Design parameters of main equipment"
设备 | 参数名称 | 数值 |
---|---|---|
冷热电联产机组 | 余热回收率 | 0.5 |
余热供热系数 | 0.95 | |
余热供热效率(额定) | 0.45 | |
燃气轮机发电效率(额定) | 0.3 | |
天然气碳排放因子/(kg/kWh) | 0.21 | |
电制冷机 | 电制冷机制冷系数(额定) | 2.5 |
吸收式制冷机 | 吸收式制冷机制冷系数(额定) | 1.3 |
燃气锅炉 | 燃气锅炉热效率(额定) | 0.9 |
电锅炉 | 电锅炉热效率(额定) | 0.95 |
电池 | 充电效率(额定) | 0.95 |
放电效率(额定) | 0.95 | |
最大荷电状态 | 0.8 | |
最小荷电状态 | 0.2 | |
储热罐 | 储热装置充热效率 | 0.9 |
储热装置放热效率 | 0.9 | |
最大储热状态 | 0.8 | |
最小储热状态 | 0.2 | |
电网 | 电网碳排放因子/(kg/kWh) | 0.98 |
Table 3
Economic parameters of main equipment"
设备 | 参数 | 数值 |
---|---|---|
风机 | 投资成本 | 2800 CNY/kW |
运维成本 | 0.03 CNY/kW | |
寿命 | 20 a | |
光伏 | 投资成本 | 2400 CNY/kW |
运维成本 | 0.05 CNY/kW | |
寿命 | 20 a | |
吸收式制冷机 | 投资成本 | 1200 CNY/kW |
运维成本 | 0.048 CNY/kW | |
寿命 | 20 a | |
电制冷机 | 投资成本 | 1100 CNY/kW |
运维成本 | 0.06 CNY/kW | |
寿命 | 20 a | |
电池 | 投资成本 | 2000 CNY/kW |
运维成本 | 0.018 CNY/kW | |
寿命 | 10 a | |
燃气轮机 | 投资成本 | 3000 CNY/kW |
运维成本 | 0.05 CNY/kW | |
寿命 | 20 a | |
燃气锅炉 | 投资成本 | 1150 CNY/kW |
运维成本 | 0.04 CNY/kW | |
寿命 | 20 a | |
储热水罐 | 投资成本 | 140 CNY/kW |
运维成本 | 0.016 CNY/kW | |
寿命 | 10 a |
[1] | XIA W J, APERGIS N, BASHIR M F, et al. Investigating the role of globalization, and energy consumption for environmental externalities: Empirical evidence from developed and developing economies[J]. Renewable Energy, 2022, 183: 219-228. DOI: 10.1016/j.renene.2021.10.084. |
[2] | PERERA A T D, JAVANROODI K, WANG Y, et al. Urban cells: Extending the energy hub concept to facilitate sector and spatial coupling[J]. Advances in Applied Energy, 2021, 3: 100046. DOI: 10.1016/j.adapen.2021.100046. |
[3] | FARROKHIFAR M, NIE Y H, POZO D. Energy systems planning: A survey on models for integrated power and natural gas networks coordination[J]. Applied Energy, 2020, 262: 114567. DOI: 10.1016/j.apenergy.2020.114567. |
[4] | 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95. DOI: 10.19912/j.0254-0096.tynxb.2019-0763. |
WANG Y Z, KANG L G, ZHANG J, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95. DOI: 10.19912/j.0254-0096.tynxb.2019-0763. | |
[5] | 王庆刚, 杨谋存, 朱跃钊, 等. 可再生能源多能互补热电气联产系统评价方法综述[J]. 电网技术, 2021, 45(3): 937-950. DOI: 10.13335/j.1000-3673.pst.2020.1414. |
WANG Q G, YANG M C, ZHU Y Z, et al. Review on evaluation methods of combined heating, power and biogas system coupled with renewable energy[J]. Power System Technology, 2021, 45(3): 937-950. DOI: 10.13335/j.1000-3673.pst.2020.1414. | |
[6] | WANG Y Z, HAN Y B, SHEN J, et al. Data center integrated energy system for sustainability: Generalization, approaches, methods, techniques, and future perspectives[J]. The Innovation Energy, 2024, 1(1): 100014. DOI: 10.59717/j.xinn-energy.2024. 100014. |
[7] | LIU Z Q, CUI Y P, WANG J Q, et al. Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties[J]. Energy, 2022, 254: 124399. DOI: 10.1016/j.energy.2022.124399. |
[8] | QIAO Y Y, HU F, XIONG W, et al. Multi-objective optimization of integrated energy system considering installation configuration[J]. Energy, 2023, 263: 125785. DOI: 10.1016/j.energy.2022.125785. |
[9] | ELTAMALY A M, AL-SAUD M S, ABOKHALIL A G, et al. Photovoltaic maximum power point tracking under dynamic partial shading changes by novel adaptive particle swarm optimization strategy[J]. Transactions of the Institute of Measurement and Control, 2020, 42(1): 104-115. DOI: 10.1177/0142331219865627. |
[10] | 陈克文, 王帅, 韩兴臣, 等. 考虑风电消纳的冷热电联供型综合能源系统多目标日前优化调度[J]. 电气工程学报, 2022, 17(3): 170-176. |
CHEN K W, WANG S, HAN X C, et al. Multi-objective day-ahead optimization scheduling of integrated energy system with CCHP considering wind power consumption[J]. Journal of Electrical Engineering, 2022, 17(3): 170-176. | |
[11] | SHEN H T, ZHANG H L, XU Y J, et al. Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat[J]. Energy Conversion and Management, 2022, 269: 116116. DOI: 10.1016/j.enconman.2022.116116. |
[12] | LIU N, HE L, YU X H, et al. Multiparty energy management for grid-connected microgrids with heat- and electricity-coupled demand response[J]. IEEE Transactions on Industrial Informatics, 2017, 14(5): 1887-1897. DOI: 10.1109/TII.2017.2757443. |
[13] | GU Q Y, REN H B, GAO W J, et al. Integrated assessment of combined cooling heating and power systems under different design and management options for residential buildings in Shanghai[J]. Energy and Buildings, 2012, 51: 143-152. DOI: 10.1016/j.enbuild.2012.04.023. |
[14] | 肖定垚, 王承民, 曾平良, 等. 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38(6): 1569-1576. DOI: 10.13335/j.1000-3673.pst.2014.06.023. |
XIAO D Y, WANG C M, ZENG P L, et al. A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 38(6): 1569-1576. DOI: 10.13335/j.1000-3673.pst.2014.06.023. | |
[15] | 王安, 杨绮, 王菁, 等. 含储热的热电联产机组经济性与灵活性多目标优化算法[J]. 电力工程技术, 2024, 43(2): 248-259. |
WANG A, YANG Q, WANG J, et al. Multi-objective optimization algorithm for economy and flexibility of cogeneration unit with heat storage[J]. Electric Power Engineering Technology, 2024, 43(2): 248-259. | |
[16] | 陈晚晴, 穆云飞, 贾宏杰, 等. 考虑设备变工况特性的区域综合能源系统优化调度方法[J]. 电网技术, 2021, 45(3): 951-958. DOI: 10.13335/j.1000-3673.pst.2020.1149. |
CHEN W Q, MU Y F, JIA H J, et al. Operation optimization method for regional integrated energy system considering part-load performances of devices[J]. Power System Technology, 2021, 45(3): 951-958. DOI: 10.13335/j.1000-3673.pst.2020.1149. | |
[17] | HU X, ZHANG H, CHEN D W, et al. Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy, 2020, 197: 117155. DOI: 10.1016/j.energy.2020.117155. |
[18] | 王永真, 张靖, 潘崇超, 等. 综合智慧能源多维绩效评价指标研究综述[J]. 全球能源互联网, 2021, 4(3): 207-225. DOI: 10.19705/j.cnki.issn2096-5125.2021.03.002. |
WANG Y Z, ZHANG J, PAN C C, et al. Multi-dimensional performance evaluation index review of integrated and intelligent energy[J]. Journal of Global Energy Interconnection, 2021, 4(3): 207-225. DOI: 10.19705/j.cnki.issn2096-5125.2021.03.002. | |
[19] | TERA I, ZHANG S G, LIU G L. A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment[J]. Energy, 2024, 295: 131015. DOI: 10.1016/j.energy.2024.131015. |
[20] | 王永真, 朱轶林, 康利改, 等. 计及能值的中国电力能源系统可持续性综合评价[J]. 全球能源互联网, 2021, 4(1): 19-27. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.004. |
WANG Y Z, ZHU Y L, KANG L G, et al. Comprehensive sustainability evaluation of China's power system based on emergy analysis[J]. Journal of Global Energy Interconnection, 2021, 4(1): 19-27. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.004. | |
[21] | DEYMI-DASHTEBAYAZ M, NORANI M. Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111511. DOI: 10.1016/j.rser.2021.111511. |
[22] | KHOSRAVI S, ROY D, KHOSHBAKHTI SARAY R, et al. Techno-economic analysis, emergy assessment, and optimization using response surface methodology of a solar and biomass-based co-generation system[J]. Energy Conversion and Management, 2024, 307: 118376. DOI: 10.1016/j.enconman.2024.118376. |
[23] | ZHANG H L, GUAN X, DING Y, et al. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation[J]. Journal of Cleaner Production, 2018, 183: 1207-1215. DOI: 10.1016/j.jclepro.2018.02.170. |
[24] | 田立亭, 程林, 郭剑波, 等. 基于能值分析的多能互补综合能源系统价值评估方法[J]. 电网技术, 2019, 43(8): 2925-2934. DOI: 10.13335/j.1000-3673.pst.2018.2310. |
TIAN L T, CHENG L, GUO J B, et al. Multi-energy system valuation method based on emergy analysis[J]. Power System Technology, 2019, 43(8): 2925-2934. DOI: 10.13335/j.1000-3673.pst.2018.2310. | |
[25] | KARMELLOS M, MAVROTAS G. Multi-objective optimization and comparison framework for the design of distributed energy systems[J]. Energy Conversion and Management, 2019, 180: 473-495. DOI: 10.1016/j.enconman.2018.10.083. |
[26] | 冯志兵, 金红光. 燃气轮机冷热电联产系统与蓄能变工况特性[J]. 中国电机工程学报, 2006, 26(4): 25-30. DOI: 10.3321/j.issn: 0258-8013.2006.04.006. |
FENG Z B, JIN H G. Part-load performance of CCHP with gas turbine and storage system[J]. Proceedings of the CSEE, 2006, 26(4): 25-30. DOI: 10.3321/j.issn: 0258-8013.2006.04.006. | |
[27] | WEI D J, CHEN A L, SUN B, et al. Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system[J]. Energy, 2016, 98: 296-307. DOI: 10.1016/j.energy.2016.01.027. |
[28] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24. DOI: 10.7500/AEPS20171002004. |
YANG J W, ZHANG N, WANG Y, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24. DOI: 10.7500/AEPS20171002004. | |
[29] | MA T F, WU J Y, HAO L L, et al. The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141. DOI: 10.1016/j.energy.2018.06.198. |
[30] | FU X Q, SUN H B, GUO Q L, et al. Uncertainty analysis of an integrated energy system based on information theory[J]. Energy, 2017, 122: 649-662. DOI: 10.1016/j.energy.2017.01.111. |
[31] | 薛屹洵, 郭庆来, 孙宏斌, 等. 面向多能协同园区的能源综合利用率指标[J]. 电力自动化设备, 2017, 37(6): 117-123. DOI: 10.16081/j.issn.1006-6047.2017.06.016. |
XUE Y X, GUO Q L, SUN H B, et al. Comprehensive energy utilization rate for park-level integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 117-123. DOI: 10.16081/j.issn.1006-6047.2017.06.016. | |
[32] | WANG Y Z, ZHANG L L, SONG Y, et al. State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113835. DOI: 10.1016/j.rser.2023.113835. |
[1] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[2] | Yangyang XIONG, Aiqing YU, Yufei WANG, Hua XUE. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties [J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. |
[3] | Siyuan HUANG, Chen WANG, Ting LIANG, Zhu JIANG, Jiajing LI, Xiaohui SHE, Xiaosong ZHANG. Research on optimal configuration for integrated energy system with liquid air energy storage combined heat and power supply [J]. Energy Storage Science and Technology, 2024, 13(6): 1929-1939. |
[4] | Yang ZHANG, Shenghu TAO, Xiaobo ZHANG, Dongfeng ZHENG, Zhouyi CHEN. Coordinated optimization of operation strategy and capacity of energy storage equipment in distribution network [J]. Energy Storage Science and Technology, 2024, 13(3): 903-905. |
[5] | Junhong HAO, Xiaoze DU, Chao XU, Xing JU, Wanli XIAO, Qun CHEN, Yongping YANG. Course construction and practice of “energy storage and integrated energy system” for energy-storage science and engineering major in emerging engineering education [J]. Energy Storage Science and Technology, 2024, 13(3): 1074-1082. |
[6] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[7] | Haodong JIAO, Aiqing YU, Yufei WANG. Low-carbon economic dispatch of an integrated energy system considering battery swapping stations [J]. Energy Storage Science and Technology, 2023, 12(10): 3254-3264. |
[8] | Junwei WANG, Yi REN, Zun GUO, Yan ZHANG. Optimal scheduling of integrated energy system considering integrated demand response and reward and punishment ladder carbon trading [J]. Energy Storage Science and Technology, 2022, 11(7): 2177-2187. |
[9] | Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491. |
[10] | Guqiang WEI, Congchuan HU, Yixue LIU, Shuangshuang CUI, Hong LI. Economic analysis of integrated energy system based on liquid air energy storage [J]. Energy Storage Science and Technology, 2021, 10(6): 2403-2410. |
[11] | HOU Shaopan, Lü Xin, MENG Xiangfei, FAN Hualong, HE Jiajia, CHEN Jie, ZHANG Jie, HAI Jianping. Operation strategy of distributed energy storage system with multi-battery under output smoothing scenario [J]. Energy Storage Science and Technology, 2019, 8(S1): 74-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||