Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3463-3475.doi: 10.19799/j.cnki.2095-4239.2025.0122
• Energy Storage System and Engineering • Previous Articles Next Articles
Zheng CHEN1(), Jingyuan HU1, Zhigang ZHAO2, Jiangwei SHEN1, Xuelei XIA1, Fuxing WEI1(
)
Received:
2025-02-12
Revised:
2025-02-25
Online:
2025-09-28
Published:
2025-09-05
Contact:
Fuxing WEI
E-mail:chen@kust.edu.cn;wfx@kust.edu.cn
CLC Number:
Zheng CHEN, Jingyuan HU, Zhigang ZHAO, Jiangwei SHEN, Xuelei XIA, Fuxing WEI. Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs[J]. Energy Storage Science and Technology, 2025, 14(9): 3463-3475.
Table 3
Discharge internal resistance of different batteries"
电池 | 参数 | SOC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 | ||
LFP | 欧姆内阻/mΩ | 58.0 | 57.6 | 58.0 | 57.1 | 58.6 | 55.2 | 58.9 | 58.3 | 55.5 | 63.8 |
极化内阻/mΩ | 27.6 | 32.0 | 34.4 | 35.0 | 33.2 | 39.0 | 39.4 | 45.9 | 58.9 | 91.5 | |
总内阻/mΩ | 85.6 | 89.6 | 92.4 | 92.1 | 91.8 | 94.2 | 98.3 | 104.2 | 114.4 | 155.3 | |
NCM | 欧姆内阻/mΩ | 36.6 | 36.6 | 36.6 | 36.9 | 37.2 | 37.2 | 37.9 | 38.7 | 38.7 | 36.6 |
极化内阻/mΩ | 9.9 | 11.2 | 12.1 | 11.7 | 8.4 | 8.0 | 7.7 | 9.0 | 10.1 | 9.9 | |
总内阻/mΩ | 46.5 | 47.8 | 48.7 | 48.6 | 45.6 | 45.2 | 45.6 | 47.7 | 48.8 | 46.5 |
Table 5
Orthogonal table and simulation results"
组合 | x1/mm | x2/mm | y1/mm | y2/mm | |||
---|---|---|---|---|---|---|---|
1 | 1.5 | 1.5 | 1.5 | 1.5 | 43.57 | 40.66 | 7.15 |
2 | 1.5 | 2.5 | 2.5 | 2.5 | 43.41 | 40.75 | 6.41 |
3 | 1.5 | 3.5 | 3.5 | 3.5 | 43.14 | 40.61 | 6.02 |
4 | 1.5 | 4.5 | 4.5 | 4.5 | 43.17 | 40.57 | 5.92 |
5 | 2.5 | 1.5 | 2.5 | 3.5 | 43.62 | 40.86 | 6.32 |
6 | 2.5 | 2.5 | 1.5 | 4.5 | 43.21 | 40.63 | 6.09 |
7 | 2.5 | 3.5 | 4.5 | 1.5 | 43.58 | 40.74 | 7.02 |
8 | 2.5 | 4.5 | 3.5 | 2.5 | 43.41 | 40.73 | 6.26 |
9 | 3.5 | 1.5 | 3.5 | 4.5 | 43.56 | 40.71 | 6.39 |
10 | 3.5 | 2.5 | 4.5 | 3.5 | 43.40 | 40.67 | 6.55 |
11 | 3.5 | 3.5 | 1.5 | 2.5 | 43.25 | 40.66 | 6.47 |
12 | 3.5 | 4.5 | 2.5 | 1.5 | 43.33 | 40.62 | 6.72 |
13 | 4.5 | 1.5 | 4.5 | 2.5 | 44.19 | 41.08 | 7.24 |
14 | 4.5 | 2.5 | 3.5 | 1.5 | 44.03 | 40.81 | 7.74 |
15 | 4.5 | 3.5 | 2.5 | 4.5 | 43.26 | 40.56 | 6.39 |
16 | 4.5 | 4.5 | 1.5 | 3.5 | 43.06 | 40.51 | 6.22 |
[1] | 唐康, 刘振祥, 唐丹, 等. 分布式电池系统热平衡控制设计[J]. 电池, 2024, 54(1): 41-46. DOI:10.19535/j.1001-1579.2024.01.009. |
TANG K, LIU Z X, TANG D, et al. Design of thermal balancing control for distributed battery system[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 41-46. DOI:10.19535/j.1001-1579.2024.01.009. | |
[2] | 孙涛, 郑侠, 郑岳久, 等. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. DOI: 10.19562/j.chinasae. qcgc.2022.04.005. |
SUN T, ZHENG X, ZHENG Y J, et al. Fast charging control of lithium-ion batteries based on electrochemical-thermal coupling model[J]. Automotive Engineering, 2022, 44(4): 495-504. DOI: 10.19562/j.chinasae.qcgc.2022.04.005. | |
[3] | PATEL J, PATEL R, SAXENA R, et al. Thermal analysis of high specific energy NCM-21700 Li-ion battery cell under hybrid battery thermal management system for EV applications[J]. Journal of Energy Storage, 2024, 88: 111567. DOI: 10.1016/j.est. 2024.111567. |
[4] | SCHÖBERL J, ANK M, SCHREIBER M, et al. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration[J]. eTransportation, 2024, 19: 100305. DOI: 10.1016/j.etran.2023.100305. |
[5] | WANG G, JIN B, WANG M Z, et al. State of charge estimation for "LiFePO4-LiCoxNiyMn1- x- yO2" hybrid battery pack[J]. Journal of Energy Storage, 2023, 65: 107345. DOI: 10.1016/j.est.2023. 107345. |
[6] | YAO S, WANG G, ZHU H, et al. Equalization method of 'LiCoxNiyMn1- x- yO2-LiFePO4' hybrid battery pack based on charging electric quantity estimation[J]. Journal of Energy Storage, 2023, 69: 107959. DOI: 10.1016/j.est.2023.107959. |
[7] | WANG M Z, WANG G, LUO Q, et al. Study on the configuration of LiCoxNiyMn1- x- yO2-LiFePO4 hybrid battery pack[J]. Applied Energy, 2024, 372: 123744. DOI: 10.1016/j.apenergy.2024. 123744. |
[8] | EBBS-PICKEN T, DA SILVA C M, AMON C H. Design optimization methodologies applied to battery thermal management systems: A review[J]. Journal of Energy Storage, 2023, 67: 107460. DOI: 10.1016/j.est.2023.107460. |
[9] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. DOI: 10.19799/j.cnki. 2095-4239.2023.0620. |
SONG M Q, PENG Y, LIAO Z Q. Research on battery thermal management based on electrochemical model[J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. DOI: 10.19799/j.cnki.2095-4239.2023.0620. | |
[10] | LI W, XIE Y, HU X S, et al. An internal heating strategy for lithium-ion batteries without lithium plating based on self-adaptive alternating current pulse[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 5809-5823. DOI: 10.1109/TVT.2022. 3229187. |
[11] | LI K J, WANG H B, XU C S, et al. Multi-objective optimization of side plates in a large format battery module to mitigate thermal runaway propagation[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122395. DOI: 10.1016/j.ijheatmasstransfer. 2021.122395. |
[12] | 刘书琴, 王小燕, 张振东, 等. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. DOI: 10. 19799/j.cnki.2095-4239.2023.0152. |
LIU S Q, WANG X Y, ZHANG Z D, et al. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. DOI: 10.19799/j.cnki.2095-4239.2023.0152. | |
[13] | VERMA S P, SARASWATI S. Numerical and experimental analysis of air-cooled lithium-ion battery pack for the evaluation of the thermal performance enhancement[J]. Journal of Energy Storage, 2023, 73: 108983. DOI: 10.1016/j.est.2023.108983. |
[14] | SHI Y, AHMAD S, LIU H Q, et al. Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning[J]. Journal of Power Sources, 2021, 497: 229894. DOI: 10.1016/j.jpowsour.2021.229894. |
[15] | FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155: 96-109. DOI: 10.1016/j.applthermaleng. 2019.03.157. |
[16] | KANG D, LEE P Y, YOO K, et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27: 101017. DOI: 10.1016/j.est. 2019.101017. |
[17] | ZHANG Y, SONG X D, MA C Y, et al. Effects of the structure arrangement and spacing on the thermal characteristics of Li-ion battery pack at various discharge rates[J]. Applied Thermal Engineering, . DOI: 10.1016/j.applthermaleng.2019.114610. |
[18] | 刘剑, 于立博, 吴振兴, 等. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. DOI: 10. 19799/j.cnki.2095-4239.2023.0688. |
LIU J, YU L B, WU Z X, et al. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling[J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. DOI: 10.19799/j.cnki.2095-4239.2023.0688. | |
[19] | 徐晓斌, 徐业飞, 张恒运, 等. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562. DOI: 10. 19799/j.cnki.2095-4239.2021.0407. |
XU X B, XU Y F, ZHANG H Y, et al. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module[J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. DOI: 10.19799/j.cnki.2095-4239.2021. 0407. | |
[20] | SARMADIAN A, WIDANAGE W D, SHOLLOCK B, et al. Experimentally-verified thermal-electrochemical simulations of a cylindrical battery using physics-based, simplified and generalised lumped models[J]. Journal of Energy Storage, 2023, 70: 107910. DOI: 10.1016/j.est.2023.107910. |
[21] | LI A, YUEN A C Y, WANG W, et al. Numerical investigation on the thermal management of lithium-ion battery system and cooling effect optimization[J]. Applied Thermal Engineering, 2022, 215: 118966. DOI: 10.1016/j.applthermaleng.2022.118966. |
[22] | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792. |
[23] | HE H S, CHEN X J, FLY A, et al. A Fast Activation Energy Derivation (FAED) approach for Lumped Single Particle model in lithium-ion battery module-level heat generation prediction[J]. Journal of Power Sources, 2023, 580: 233431. DOI: 10.1016/j.jpowsour.2023.233431. |
[24] | LEMPERT J, KOLLMEYER P, MALYSZ P, et al. Battery entropic heating coefficient testing and use in cell-level loss modeling for extreme fast charging[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(5): 2712-2720. DOI: 10.4271/2020-01-0862. |
[25] | XIE Y Q, SHI S, TANG J C, et al. Experimental and analytical study on heat generation characteristics of a lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 122: 884-894. DOI: 10.1016/j.ijheatmasstransfer.2018.02.038. |
[26] | GOMADAM P M, WHITE R E, WEIDNER J W. Modeling heat conduction in spiral geometries[J]. Journal of the Electrochemical Society, 2003, 150(10): A1339. DOI: 10.1149/1.1605743. |
[27] | ZHANG S B, NIE F, CHENG J P, et al. Optimizing the air flow pattern to improve the performance of the air-cooling lithium-ion battery pack[J]. Applied Thermal Engineering, 2024, 236: 121486. DOI: 10.1016/j.applthermaleng.2023.121486. |
[28] | Introduction to computational fluid dynamics: Development, Application and analysis | SpringerLink [EB]. |
[29] | MONIRUL I M, QIU L, RUBY R. Accurate SOC estimation of ternary lithium-ion batteries by HPPC test-based extended Kalman filter[J]. Journal of Energy Storage, 2024, 92: 112304. DOI: 10.1016/j.est.2024.112304. |
[1] | Tuo DENG, Haiping ZHOU, Yu LIU, Chang LIU, Zikai LI, Mengqiang WU. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition [J]. Energy Storage Science and Technology, 2025, 14(9): 3354-3372. |
[2] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
[3] | Yanping YUAN, Qifa GAO, Nan ZHANG, Qinrong SUN. Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials [J]. Energy Storage Science and Technology, 2025, 14(8): 3100-3109. |
[4] | Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. Method for monitoring irreversible lithium plating in lithium batteries using transfer learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2698-2706. |
[5] | Yalong CHENG, Kunfeng LIANG, Xun ZHOU, Miaomiao LIU, Gangxin LYU, Yitian SONG. Natural stratification-based cooling characteristics of a microencapsulated phase-change material suspension and its parametric optimization study [J]. Energy Storage Science and Technology, 2025, 14(6): 2256-2269. |
[6] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
[7] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
[8] | Manquan LANG, Jun YANG, Zhongchun ZHANG, Jianlin PENG, Xulai YANG. Optimization of long slot-die head for Li-ion battery electrode coating [J]. Energy Storage Science and Technology, 2025, 14(6): 2339-2351. |
[9] | Kangbin LIU, Haichuan SHEN, Guanjia ZHAO, Wentao XIE, Weiyao XUN. Experimental and numerical study of self-pressurized ultrahigh-pressure hydrothermal energy storage [J]. Energy Storage Science and Technology, 2025, 14(6): 2352-2361. |
[10] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[11] | Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam [J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942. |
[12] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[13] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[14] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
[15] | Guiyue SHI, Hailiang TAO, Zhitao ZUO, Jingxin LI, Jixiang CHEN, Jiaxi CHEN, Haisheng CHEN. Research on blade stress optimization method of axial flow compressor in compressed air energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1522-1532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||