Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3476-3487.doi: 10.19799/j.cnki.2095-4239.2025.0138
• Energy Storage System and Engineering • Previous Articles Next Articles
Liwang AI1,2(), Weiwei WANG1, Siyuan JIANG1,2, Haichao FENG1,2, Lei XIAO1,2, Xiaozhuo XU1,2(
)
Received:
2025-02-22
Revised:
2025-03-21
Online:
2025-09-28
Published:
2025-09-05
Contact:
Xiaozhuo XU
E-mail:ailiwang@hpu.edu.cn;xxz@hpu.edu.cn
CLC Number:
Liwang AI, Weiwei WANG, Siyuan JIANG, Haichao FENG, Lei XIAO, Xiaozhuo XU. Charging and discharging strategy optimization of linear machine gravity energy storage systems[J]. Energy Storage Science and Technology, 2025, 14(9): 3476-3487.
"
字母 | 含义 | 单位 | 字母 | 含义 | 单位 |
---|---|---|---|---|---|
C | 充电成本 | 元 | PBd | 电池放电功率 | kW |
Cc | 电池储能初始投资费用 | 元 | PBc | 电池充电功率 | kW |
Cd | 电网电价 | 元/kWh | PG | 光伏出力功率曲线 | MW |
Cg | 光伏电价 | 元/kWh | PGt | t时刻光伏出力功率 | MW |
Cx | 单位容量充电成本 | 元/kWh | PN | 额定充电功率 | MW |
Cz | 电池折旧成本 | 元/kWh | Pi | i块重物的充电功率 | MW |
ΔE | 弥补容量 | MWh | Pt | t时刻指令功率 | MW |
E | 储能容量 | MWh | Pz | 单块重物充电或放电功率 | MW |
E ′ | 非额定充电功率时的储能容量 | MWh | Q | 电池额定容量 | kWh |
Ed | 电网提供的容量 | kWh | SOC | 荷电状态 | — |
Eg | 光伏电站提供的容量 | kWh | T | 额定充电功率下的充电时长 | h |
EN | 系统的最低储能容量 | MWh | T ′ | PG>PN的时长 | h |
Eq | 容量缺额 | MWh | Tcd | 充放电时间 | h |
η1 | 电池储能效率 | — | Ti | P i 的充电时长 | h |
n | 重物数量 | 块 | x | 电池充放电状态 | — |
N | 井道内重物数量 | 块 | y | 系统是否存在充放电过程 | — |
Nd | 电池寿命 | 年 |
[1] | 刘坚. 新型储能产业发展关键问题及政策机制[J]. 储能科学与技术, 2025, 14(7): 2625-2634. DOI: 10.19799/j.cnki.2095-4239.2025.0096. |
LIU J. Key issues and policy mechanisms for developing new energy storage in China[J]. Energy Storage Science and Technology, 2025, 14(7): 2625-2634. DOI: 10.19799/j.cnki.2095-4239.2025.0096. | |
[2] | 汤匀, 岳芳, 王莉晓, 等. 全球新型储能技术发展态势分析[J]. 全球能源互联网, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012. |
TANG Y, YUE F, WANG L X, et al. International development trend analysis of new energy storage technologies[J]. Journal of Global Energy Interconnection, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012. | |
[3] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[4] | 张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667. |
ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667. | |
[5] | LI F F, XIE J Z, FAN Y F, et al. Potential of different forms of gravity energy storage[J]. Sustainable Energy Technologies and Assessments, 2024, 64: 103728. DOI: 10.1016/j.seta.2024.103728. |
[6] | TONG W X, LU Z G, SUN J F, et al. Solid gravity energy storage technology: Classification and comparison[J]. Energy Reports, 2022, 8: 926-934. DOI: 10.1016/j.egyr.2022.10.286. |
[7] | 聂亚惠, 周学志, 郭丁彰, 等. 铁轨重力储能系统关键影响因素及其与风电场的耦合研究[J]. 储能科学与技术, 2024, 13(6): 1900-1910. DOI: 10.19799/j.cnki.2095-4239.2023.0962. |
NIE Y H, ZHOU X Z, GUO D Z, et al. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms[J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910. DOI: 10.19799/j.cnki.2095-4239.2023.0962. | |
[8] | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634. | |
[9] | BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage[J]. Journal of Energy Storage, 2019, 23: 159-174. DOI: 10.1016/j.est.2019.03.015. |
[10] | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy. 2019.01.226. |
[11] | KROPOTIN P, MARCHUK I. On efficiency of load-lifting rope-traction mechanisms used in gravity energy storage systems[J]. Journal of Energy Storage, 2023, 58: 106393. DOI: 10.1016/j.est.2022.106393. |
[12] | 吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5675. DOI: 10.13334/j.0258-8013.pcsee.200488. |
LYU G. Review of the application and key technology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5675. DOI: 10.13334/j.0258-8013.pcsee.200488. | |
[13] | EGUREN I, ALMANDOZ G, EGEA A, et al. Linear machines for long stroke applications—a review[J]. IEEE Access, 2019, 8: 3960-3979. |
[14] | 闫文举, 王洋, 孙芯竹, 等. 基于直线电机的废弃矿井重力储能系统研究进展与关键技术[J]. 储能科学与技术, 2025, 14(1): 255-268. DOI: 10.19799/j.cnki.2095-4239.2024.0623. |
YAN W J, WANG Y, SUN X Z, et al. Research progress and key technology of abandoned mine gravity energy storage system based on linear motor[J]. Energy Storage Science and Technology, 2025, 14(1): 255-268. DOI: 10.19799/j.cnki.2095-4239.2024.0623. | |
[15] | BOTHA C D, KAMPER M J, WANG R J. Design optimisation and cost analysis of linear vernier electric machine-based gravity energy storage systems[J]. Journal of Energy Storage, 2021, 44: 103397. DOI: 10.1016/j.est.2021.103397. |
[16] | MUGYEMA M, BOTHA C D, KAMPER M J, et al. Levelised cost of storage comparison of energy storage systems for use in primary response application[J]. Journal of Energy Storage, 2023, 59: 106573. DOI: 10.1016/j.est.2022.106573. |
[17] | MUGYEMA M, KAMPER M J, WANG R J, et al. Performance and cost comparison of drive technologies for a linear electric machine gravity energy storage system[J]. IEEE Access, 2024, 12: 46953-46966. |
[18] | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045. | |
[19] | 闫俊辰, JOHN C CRITTENDEN. 一种基于"能量" 成本的储能技术评价新方法[J]. 储能科学与技术, 2019, 8(2): 269-275. DOI: 10.12028/j.issn.2095-4239.2018.0175. |
YAN J C, CRITTENDEN J. An evaluation method of energy storage technologies based on energetic costs[J]. Energy Storage Science and Technology, 2019, 8(2): 269-275. DOI: 10.12028/j.issn.2095-4239.2018.0175. | |
[20] | 闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: CN117639015A[P]. 2024-03-01. |
YAN W J, YANG H W, SUN X Z, et al. Linear motor gravity energy storage device for waste mine and multi-energy-storage-block cooperative control method of linear motor gravity energy storage device: CN117639015A[P]. 2024-03-01. | |
[21] | 李震, 陈巨龙, 李文林, 等. 提升斜坡式重力储能AGC性能的混合储能优化运行方法[J]. 储能科学与技术, 2024, 13(8): 2761-2771. DOI: 10.19799/j.cnki.2095-4239.2024.0211. |
LI Z, CHEN J L, LI W L, et al. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. DOI: 10.19799/j.cnki.2095-4239.2024.0211. | |
[22] | 赵永明, 邱清泉, 聂子攀, 等. 重力/飞轮综合储能电机变流并网系统设计及运行特性[J]. 储能科学与技术, 2022, 11(12): 3895-3905. DOI: 10.19799/j.cnki.2095-4239.2022.0386. |
ZHAO Y M, QIU Q Q, NIE Z P, et al. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. DOI: 10. 19799/j.cnki.2095-4239.2022.0386. |
[1] | Jiabao TAN, Yufei WANG, Hua XUE. Modeling and performance analysis of piston gravity energy storage system [J]. Energy Storage Science and Technology, 2025, 14(6): 2383-2390. |
[2] | Xiaoyu QU, Liuxin DOU. Innovative application and prospect analysis of energy storage technology in cold chain logistics of fresh agricultural products e-commerce [J]. Energy Storage Science and Technology, 2025, 14(6): 2336-2338. |
[3] | Qingping ZHANG. Optimization strategy of energy storage technology to assist agricultural product e-commerce cold chain logistics distribution [J]. Energy Storage Science and Technology, 2025, 14(5): 2078-2080. |
[4] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG, Gaoyun WU, Zufan WANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of vertical gravity energy storage system based on belt drive [J]. Energy Storage Science and Technology, 2025, 14(3): 1141-1149. |
[5] | Tian GAO, Zufan WANG, Shuyang FANG, Youkang ZHANG, Liancheng ZHANG, Yongzhang HUANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of gravity energy storage system with gear box and chain transmission mechanisms [J]. Energy Storage Science and Technology, 2025, 14(2): 688-698. |
[6] | Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 583-600. |
[7] | Yuchen GAO, Weilin LI, Xiang CHEN, Yuhang YUAN, Yilin NIU, Qiang ZHANG. A perspective on DeepSeek application in energy storage research [J]. Energy Storage Science and Technology, 2025, 14(2): 467-478. |
[8] | Yukun XU, Jun YU, Chao JIANG, Jinghua WANG, Wanru ZHAO. Cost analysis of energy storage technology and power system optimization design [J]. Energy Storage Science and Technology, 2025, 14(2): 876-878. |
[9] | Aimin SUN, Jianjun HONG, Jianfeng ZHENG. Analysis of the application of energy storage technology in the renewable energy grid-connected operation [J]. Energy Storage Science and Technology, 2025, 14(2): 879-882. |
[10] | Wenju YAN, Yang WANG, Xinzhu SUN, Hao CHEN, Qing WANG. Research progress and key technology of abandoned mine gravity energy storage system based on linear motor [J]. Energy Storage Science and Technology, 2025, 14(1): 255-268. |
[11] | Ye TIAN, Shanshan WANG, Xu YAO, Jiaxin LIU, Xiaodong HAN. The significance and development of the collaborative application of distribution network communication and distributed energy storage technology [J]. Energy Storage Science and Technology, 2025, 14(1): 190-192. |
[12] | Na WEN, Chengwei LIU, Xiaoyang ZHANG, Jian GAO, Liming MA. Research on the synergistic application of automation control and energy storage technology in smart grids [J]. Energy Storage Science and Technology, 2025, 14(1): 219-221. |
[13] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[14] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[15] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||