Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (6): 1050-1061.doi: 10.12028/j.issn.2095-4239.2019.0117
Previous Articles Next Articles
ZHANG Liqiang1, TANG Yongfu2, LIU Qiunan1, SUN Haiming1, YANG Tingting1, HUANG Jianyu1,3
Received:
2019-06-03
Revised:
2019-06-29
Online:
2019-11-01
Published:
2019-07-31
CLC Number:
ZHANG Liqiang, TANG Yongfu, LIU Qiunan, SUN Haiming, YANG Tingting, HUANG Jianyu. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061.
[1] 张跃飞,李玉洁,王振宇,等.ZnO纳米电极材料原位锂化反应研宄[J].电子显微学报,2013, S1:2-3. ZHANG Y F, LI Y J, WANG Z Y, et al. The study of lithiation reaction of ZnO nano-electrode materials by in situ transmission electron microscopy[J]. Journal of Chinese Electron Microscopy Society, 2013, SI:2-3. [2] GOODENOUGH J B. Evolution of strategies for modem rechargeable batteries[J]. Accounts of Chemical Research, 2013, 46(5):1053-1061. [3] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. [4] Sony, EP391281.1989. [5] 吴宇平, 万春荣, 姜长印. 锂离子二次电池[M]. 北京:化学工业出版社, 2002. WU Y P, WAN C R, JIANG C Y. Lithium ion secondary battery[M]. Beijing:Chemical Industry Press, 2002. [6] 郭炳昆, 李新海, 杨松青. 化学电源:电池原理及制造技术[M]. 长沙:中南工业大学出版社, 2000. GUO B K, LI X H, YANG S Q. Chemical power:Principle and manufacturing technologies of batteries[M]. Changsha:Central South University of Technology Press, 2000. [7] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1):16-21. [8] TIRADO J L. Inorganic materials for the negative electrode of lithiumion batteries:State-of-the-art and future prospects[J]. Materials Science & Engineering R Reports, 2003, 40(3):103-136. [9] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [10] MA J, CHEN B B, WANG L L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392:94-115. [11] MA J, HU P, CUI G L, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4:Insights into a potential cathode material for high energy density lithium-ion batteries[J]. Chemistry of Materials, 2016, 28(11):3578-3606. [12] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860. [13] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25):5334-5340. [14] DOLLÉ M, SANNIER L, BEAUDOIN B, et al. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12):A286-A289. [15] BALASUBRAMANIAN M, SUN X, YANG X, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1/2):1-8. [16] KONG F, KOSTECKI R, NADEAU G, et al. In situ studies of SEI formation[J]. Journal of Power Sources, 2001, 97:58-66. [17] WANG L F, XU Z, WANG W L, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. Journal of the American Chemical Society, 2014, 136(18):6693-6697. [18] GAO P, WANG L P, ZHANG Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2[J]. ACS Nano, 2015, 9(11):11296-11301. [19] ZHANG L Q, WANG Y C, XIE D G, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6(14):11441-11445. [20] YAO L B, XIA W W, ZHANG H T, et al. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering[J]. Nano Energy, 2019, 60:424-431. [21] LIU H H, ZHENG H, LI L, et al. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiationdesodiation cycling[J]. Advanced Materials Interfaces, 2018, 5(4):doi:10.1002/admi·201701255. [22] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520. [23] ZHOU W D, WANG C M, ZHANG Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithiumsulfur batteries[J]. Advanced Energy Materials, 2015, 5(16):doi:10.1002/aenm·201401752. [24] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2):A100-A103. [25] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4):181-191. [26] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. [27] LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258. [28] WANG Y, ZENG H C, LEE J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers[J]. Advanced Materials, 2006, 18(5):645-649. [29] ZHAO N H, YANG L C, ZHANG P, et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries[J]. Materials Letters, 2010, 64(8):972-975. [30] YUE Y H, LIU P, ZHANG Z, et al. Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Letters, 2011, 11(8):3151-3155. [31] ZHANG W M, HU J S, GUO Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Advanced Materials, 2008, 20(6):1160-1165. [32] JI X X, HUANG X T, LIU J P, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5(3):649-653. [33] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [34] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [35] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193. [36] CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous coreshell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):491-495. [37] ZHANG L Q, LIU X H, LIU Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. ACS Nano, 2011, 5(6):4800-4809. [38] 张利强. ZnO基半导体p型、稀磁掺杂研究与纳米锂离子电池原位透射电镜分析[D]. 杭州:浙江大学, 2012. ZHANG L Q. ZnO-based semiconductor p-type, diluted magnetic doping research and in situ transmission electron microscopy analysis of nano-lithium ion battery[D]. Hangzhou:Zhejiang University, 2012. [39] SHAO Y Y, DING F, XIAO J, et al. Making Li-air batteries rechargeable:Material challenges[J]. Advanced Functional Materials, 2013, 23(8):987-1004. [40] MITCHELL R R, GALLANT B M, THOMPSON C V, et al. Allcarbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8):2952-2958. [41] LUO L L, LIU B, SONG S D, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12(6):535-539. [42] YANG T T, JIA P, LIU Q N, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie International Edition, 2018, 130(39):12932-12935. [43] LIU Q N, GENG L, YANG T T, et al. In situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode[J]. Energy Storage Materials, 2019, 19:48-55. [44] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5):4404-4019. [45] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132. [46] ZHANG L Q, TANG Y S, LIU Q N, et al. Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope[J]. Nano Energy, 2018, 53:544-549. [47] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362):506-510. [48] ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):345-349. [49] GAO P, ISHIKAWA R, TOCHIGI E, et al. Atomic-scale tracking of a phase transition from spinel to rocksalt in lithium manganese oxide[J]. Chemistry of Materials, 2017, 29(3):1006-1013. [50] YAN P F, ZHENG J M, TANG Z K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14:602-608. [51] GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12):4274-4277.s[J]. Electrochemical and Solid-State Letters, 2002, 5(12):A286-A289. [15] BALASUBRAMANIAN M, SUN X, YANG X, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1-2):1-8. [16] KONG F, KOSTECKI R, NADEAU G, et al. In situ studies of SEI formation[J]. Journal of Power Sources, 2001, 97:58-66. [17] WANG L F, XU Z, WANG W L, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. Journal of the American Chemical Society, 2014, 136(18):6693-6697. [18] GAO P, WANG L P, ZHANG Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2[J]. Acs Nano, 2015, 9(11):11296-11301. [19] ZHANG L Q, WANG Y C, XIE D G, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6(14):11441-11445. [20] YAO L B, XIA W W, ZHANG H T, et al. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering[J]. Nano Energy, 2019, 60:424-431. [21] LIU H H, ZHENG H, LI L, et al. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling[J]. Advanced Materials Interfaces, 2018, 5(4):1701255. [22] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520. [23] ZHOU W D, WANG C M, ZHANG Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16):1401752. [24] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2):A100-A103. [25] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4):181-191. [26] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. [27] LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258. [28] WANG Y, ZENG H C, LEE J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers[J]. Advanced Materials, 2006, 18(5):645-649. [29] ZHAO N H, YANG L C, ZHANG P, et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries[J]. Materials Letters, 2010, 64(8):972-975. [30] YUE Y H, LIU P, ZHANG Z, et al. Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Letters, 2011, 11(8):3151-3155. [31] ZHANG W M, HU J S, GUO Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-Ion batteries[J]. Advanced Materials, 2008, 20(6):1160-1165. [32] JI X X, HUANG X T, LIU J P, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5(3):649-653. [33] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [34] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [35] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193. [36] CUI L-F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):491-495. [37] ZHANG L Q, LIU X H, LIU Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. ACS Nano, 2011, 5(6):4800-4809. [38] 张利强. ZnO基半导体p型、稀磁掺杂研究与纳米锂离子电池原位透射电镜分析[D]. 浙江大学, 2012. ZHANG L Q. ZnO-based semiconductor p-type, diluted magnetic doping research and in situ transmission electron microscopy analysis of nano-lithium ion battery[D]. Zhejiang University, 2012. [39] SHAO Y Y, DING F, XIAO J, et al. Making Li-air batteries rechargeable:Material challenges[J]. Advanced Functional Materials, 2013, 23(8):987-1004. [40] MITCHELL R R, GALLANT B M, THOMPSON C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8):2952-2958. [41] LUO L L, LIU B, SONG S D, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12(6):535-539. [42] YANG T T, JIA P, LIU Q N, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie International Edition, 2018, 130(39):12932-12935. [43] LIU Q N, GENG L, YANG T T, et al. In situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode[J]. Energy Storage Materials, 2019,19:48-55. [44] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5):4404-4019. [45] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132. [46] ZHANG L Q, TANG Y S, LIU Q N, et al. Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope[J]. Nano Energy, 2018, 53:544-549. [47] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362):506-510. [48] ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):345-349. [49] GAO P, ISHIKAWA R, TOCHIGI E, et al. Atomic-scale tracking of a phase transition from spinel to rocksalt in Lithium Manganese Oxide[J]. Chemistry of Materials, 2017, 29(3):1006-1013. [50] YAN P F, ZHENG J M, TANG Z-K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14:602-608. [51] GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12):4274-4277. |
[1] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[2] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[3] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[4] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[5] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[6] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[7] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[8] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[9] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[10] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[11] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[12] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[13] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[14] | LU Tianjiao, HUANG Zhimei, XIE Meilan, SHEN Yue. Lithium anode stabilization via AgF pretreatment and its application in a Li-oxygen battery [J]. Energy Storage Science and Technology, 2020, 9(3): 807-812. |
[15] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||