Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (6): 1040-1049.doi: 10.12028/j.issn.2095-4239.2019.0115
Previous Articles Next Articles
FAN Yaping1,2, YAN Liqin2, JIAN Dechao2, LYU Taolin2, YU Meng1,2, WANG Zhenyu1, ZHANG Quansheng1, XIE Jingying2
Received:
2019-05-30
Revised:
2019-06-13
Online:
2019-11-01
Published:
2019-11-01
CLC Number:
FAN Yaping, YAN Liqin, JIAN Dechao, LYU Taolin, YU Meng, WANG Zhenyu, ZHANG Quansheng, XIE Jingying. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049.
[1] 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5):1008-1025. WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5):1008-1025. [2] ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10(1):doi:https://doi.org/10.1038/s41467-019-09924-1. [3] GROSS T, GIEBELER L HESS C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Review of Scientific Instruments, 2013, 84(7):doi:10.1063/1.4813263. [4] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10/11):1569-1574. [5] GUO Z, ZHU J, FENG J, et al. Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes[J]. RSC Advances, 2015, 5(85):69514-69521. [6] HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6):265-274. [7] CHEN D, INDRIS S, SCHULZ M, et al. In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid[J]. Journal of Power Sources, 2011, 196(15):6382-6387. [8] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Lipolymer batteries[J]. Nano Letters, 2018, 18(12):7583-7589. [9] MILLER D J, PROFF C, WEN J G, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Advanced Energy Materials, 2013, 3(8):1098-1103. [10] STEIGER J, KRAMER D, MöNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136:529-536. [11] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520. [12] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860. [13] LIU X H, LIU Y, KUSHIMA A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures[J]. Advanced Energy Materials, 2012, 2(7):722-741. [14] LEE H W, LI Y CUI Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes[J]. Current Opinion in Chemical Engineering, 2016, 12:37-43. [15] YANG Z, ONG P V, HE Y, et al. Direct visualization of Li dendrite effect on LiCoO2 cathode by in situ TEM[J]. Small, 2018, 14(52):doi:10.1002/smll.201870252. [16] ABELLAN P, MEHDI B L, PARENT L R, et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy[J]. Nano Letters, 2014, 14(3):1293-1299. [17] ZENG Z, LIANG W I, LIAO H G, et al. Visualization of electrodeelectrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4):1745-1750. [18] ROSS F M. Opportunities and challenges in liquid cell electron microscopy[J]. Science, 2015, 350(6267):doi:10.1126/science. aaa9886. [19] WU F, YAO N. Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery[J]. Nano Energy, 2015, 11:196-210. [20] WHEATCROFT L, ÖZKAYA D, COOKSON J, et al. Towards in-situ TEM for Li-ion battery research[J]. Energy Procedia, 2018, 151:163-167. [21] TRIPATHI A M, SU W N HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47(3):736-851. [22] SHUI J L, OKASINSKI J S, KENESEI P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature Communications, 2013, 4:doi:10.1038/ncomms3255. [23] CHATTOPADHYAY S, LIPSON A L, KARMEL H J, et al. In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode[J]. Chemistry of Materials, 2012, 24(15):3038-3043. [24] CHENG J H, ASSEGIE A A, HUANG C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. The Journal of Physical Chemistry C, 2017, 121(14):7761-7766. [25] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159):716-720. [26] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1):doi:10.1038/nmat3793. [27] 刘湘思, 向宇轩, 钟贵明, 等. 锂/钠离子电池材料的固体核磁共振谱研究进展[J]. 电源技术, 2019, 43(1):5-12. LIU Xiangsi, XIANG Yuxuan, ZHONG Guiming, et al. Recent progress in solid-state NMR spectroscopy study of electrode/electrolyte materials for lithium/sodium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1):5-12. [28] LETELLIER M, CHEVALLIER F, MORCRETTE M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle[J]. Carbon, 2007, 45(5):1025-1034. [29] KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249. [30] BHATTACHARYYA R, KEY B, CHEN H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6):504-510. [31] CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4):311-315. [32] KLETT M, GIESECKE M, NYMAN A, et al. Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging[J]. Journal of the American Chemical Society, 2012, 134(36):14654-14657. [33] ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid state 7Li NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6):A952-A958. [34] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48):15209-15216. [35] PECHER O, BAYLEY P M, LIU H, et al. Automatic tuning matching cycler (ATMC) in situ NMR spectroscopy as a novel approach for realtime investigations of Li-and Na-ion batteries[J]. Journal of Magnetic Resonance, 2016, 265:200-209. [36] WIEMERS-MEYER S, WINTER M, NOWAK S. A battery cell for in situ NMR measurements of liquid electrolytes[J]. Physical Chemistry Chemical Physics, 2017, 19(7):4962-4966. [37] ZINTH V, VON LüDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271:152-159. [38] VON LüDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342:17-23. [39] SMART M C, RATNAKUMAR B V, WHITCANACK L, et al. Performance characteristics of lithium ion cells at low temperatures[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(12):16-20. [40] SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of The Electrochemical Society, 2011, 158(4):A379-A389. [41] BUGGA R V, SMART M C. Lithium plating behavior in lithium-ion cells[J]. ECS Transaction, 2010, 25(36):241-252. [42] PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254:80-87. [43] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275:799-807. [44] WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-A Post-Mortem study[J]. Journal of Power Sources, 2014, 262:129-135. [45] 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6):607-616. ZHANG Jianbo, SU Laisuo, LI Xinyu, et al. Lithium plating detection based on aging behavior of lithium ion cells[J]. Journal of Electrochemistry, 2016, 22(6):607-616. [46] QI Y, HARRIS S J. In situ observation of strains during lithiation of a graphite electrode[J]. Journal of the Electrochemical Society, 2010, 157(6):A741-A747. [47] KONAR S, HäUSSERMAN U, SVENSSON G. Intercalation compounds from LiH and graphite:Relative stability of metastable stages and thermodynamic stability of dilute stage Id[J]. Chemistry of Materials, 2015, 27(7):2566-2575. [48] OHZUKU T, MATOBA N, SAWAI K. Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry[J]. Journal of Power Sources, 2001, 97:73-77. [49] TAMINATO S, YONEMURA M, SHIOTANI S, et al. Real-time observations of lithium battery reactions-Operando neutron diffraction analysis during practical operation[J]. Scientific Reports, 2016, 6:doi:10.1038/srep28843. [50] SHARMA N, PETERSON V K, ELCOMBE M M, et al. Structural changes in a commercial lithium-ion battery during electrochemical cycling:An in situ neutron diffraction study[J]. Journal of Power Sources, 2010, 195(24):8258-8266. [51] BITZER B GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262:297-302. [52] BURNS J C,STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of Electrochemical Society, 2015, 162(6):A959-A964. [53] LIU Q Q, PETIBON R, DU C Y, et al. Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(6):A1173-A1183. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[3] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Yuyang LIU, Shunli WANG, Yanxin XIE, Weikang JI, Yixing ZHANG. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model [J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. |
[6] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[7] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[8] | Yufeng XU, Jiabin YAN, Jianming HE, Zhengwei JU, Ge CHENG, Da ZHENG, Yinlong ZOU, Lei YE, Jianxin WANG. Integration and application of retried LIBs in photovoltaic and energy storage micro grid [J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. |
[9] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
[10] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[11] | Zhou JIN, Hailong YU, Wenwu ZHAO, Guangjin ZHAO, Xuejie HUANG. Graphite/nano-Sn composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 137-142. |
[12] | Shouding LI, Yan LI, Jie TIAN, Yuming ZHAO, Min YANG, Jun LUO, Yuancheng CAO, Shijie CHENG. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications [J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. |
[13] | Danfeng ZHANG, Jinhua SUN, Qingsong WANG. Effect of module structure on performance of phase change material based Li-ion battery thermal management system [J]. Energy Storage Science and Technology, 2020, 9(5): 1526-1539. |
[14] | SUN Jie, LI Jigang, ZHOU Tian, WEI Shouping, XIE Hongjia, TANG Na, DANG Shengnan, YANG Kai, LI Hong, QIU Xinping, CHEN Liquan. Composition and Toxicity detection standard method of lithium ion battery thermal runaway leakage (Draft) [J]. Energy Storage Science and Technology, 2020, 9(2): 633-637. |
[15] | MA Tianyi, WANG Fang, XU Dapeng, LIN Chunjing, LIU Shiqiang, CHEN Liduo. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||