[1] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367.
[2] http://china.nikkeibp.com.cn/news/elec/64481-20130130.html.
[3] 许晓雄,邱志军,官亦标. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013,2(4):331-341.
XU Xiaoxiong,QIU Zhijun,GUAN Yibiao,et al. All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology,2013,2(4):331-341.
[4] AGRAWAL R C,GUPTA R K. Superionic solid:Composite electrolyte phase–An overview[J]. Journal of Materials Science,1999,34(6):1131-1162.
[5] MAIER J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nat. Mater.,2005,4(11):805-815.
[6] AONO H,SUGIMOTO E,SADAOKA Y,et al. The electrical properties of ceramic electrolytes for LiMxTi2−x(PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr systems[J]. Journal of the Electrochemical Society,1993,140(7):1827-1833.
[7] 黄祯,杨菁,陈晓添. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术,2015,4(1):1-18.
HUANG Zhen,YANG Jing,CHEN Xiaotian,et al. Research progress of inorganic solid electrolyte in foundmental and application field[J]. Energy Storage Science and Technology,2015,4(1):1-18.
[8] ZHU Y,HE X,MO Y. First principles study on electrochemical and chemical stability of the solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A,2016,9(4):3253-3266.
[9] MAIER J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry,1995,23(3):171-263.
[10] WOO J H,TREVEY J E,CAVANAGH A S,et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries[J]. Journal of the Electrochemical Society,2012,159(7):A1120-A1124.
[11] YAO X,HUANG B,YIN J,et al. All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science[J]. Chinese Physics B,2016,25(1):212-225.
[12] OKUMURA T,NAKATSUTSUMI T,INA T,et al. Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode-solid electrolyte interface for all solid state lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(27):10051-10060.
[13] OHTA N,TAKADA K,ZHANG L,et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials,2006,18(17):2226-2229.
[14] OHTA N,TAKADA K,SAKAGUCHI I,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications,2007,9(7):1486-1490.
[15] SAKUDA A,KITAURA H,HAYASHI A,et al. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers[J]. Journal of the Electrochemical Society,2009,156(1):A27-A32.
[16] SAKUDA A,HAYASHI A,OHTOMO T,et al. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes[J]. Journal of Power Sources,2011,196(16):6735-6741.
[17] SAKUDA A,HAYASHI A,TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials,2010,22(3):949-956.
[18] XU X,TAKADA K,WATANABE K,et al. Self-organized core-shell structure for high-power electrode in solid-state lithium batteries[J]. Chemistry of Materials,2011,23(17):3798-3804.
[19] XU X,TAKADA K,FUKUDA K,et al. Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte[J]. Energy & Environmental Science,2011,4(9):3509-3512.
[20] PENG G,YAO X,WAN H,et al. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte[J]. Journal of Power Sources,2016,307:724-730.
[21] OHTA S,KOBAYASHI T,SEKI J,et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. Journal of Power Sources,2012,202:332-335.
[22] OHTA S,KOMAGATA S,SEKI J,et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources,2013,238:53-56.
[23] HOSHINA K,DOKKO K,KANAMURA K. Investigation on electrochemical interface between Li4Ti5O12 and Li1+xAlxTi2−x( PO4)3 NASICON-type solid electrolyte[J]. Journal of the Electrochemical Society,2005,152(11):A2138-A2142.
[24] DOKKO K,HOSHINA K,NAKANO H,et al. Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2−x( PO4)3 NASICON-type solid electrolyte[J]. Journal of Power Sources,2007,174(2):1100-1103.
[25] HOSHINA K,YOSHIMA K,KOTOBUKI M,et al. Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2−x( PO4)3 solid electrolyte[J]. Solid State Ionics,2012,209-210:30-35.
[26] SAKUDA A,KITAURA H,HAYASHI A,et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses[J]. Electrochemical and Solid State Letters,2008,11(1):A1-A3.
[27] SAKUDA A,HAYASHI A,TATSUMISAGO M. Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2 films on LiCoO2 electrode[J]. Journal of Power Sources,2010,195(2):599-603.
[28] MACHIDA N,KASHIWAGI J,NAITO M,et al. Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials[J]. Solid State Ionics,2012,225:354-358.
[29] SAKUDA A,NAKAMOTO N,KITAURA H,et al. All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes[J]. Journal of Materials Chemistry,2012,22(30):15247-15254.
[30] KIM J,KIM M,NOH S,et al. Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries[J]. Ceramics International,2016,42(2,Part A):2140-2146.
[31] SAKUDA A,KITAURA H,HAYASHI A,et al. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers[J]. Journal of the Electrochemical Society,2009,156(1):A27-A32.
[32] ITO S,FUJIKI S,YAMADA T,et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources,2014,248:943-950.
[33] ITO Y,SAKURAI Y,YUBUCHI S,et al. Application of LiCoO2 particles coated with lithium ortho-oxosalt thin films to sulfide-type all-solid-state lithium batteries[J]. Journal of the Electrochemical Society,2015,162(8):A1610-A1616.
[34] LU D,SHAO Y,LOZANO T,et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Advanced Energy Materials,2015,5(3):doi: 10.1002/ aenm. 201400993.
[35] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nat. Mater.,2011,10(9):682-686.
[36] WENZEL S,LEICHTWEISS T,KR GER D,et al. Interphase formation on lithium solid electrolytes-an in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics,2015,278:98-105.
[37] WENZEL S,WEBER D A,LEICHTWEISS T,et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics,2016,286:24-33.
[38] WENZEL S,RANDAU S,LEICHTWEI T,et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials,2016,28(7):2400-2407.
[39] ONG S P,MO Y,RICHARDS W D,et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors[J]. Energy & Environmental Science,2013,6(1):148-156.
[40] SHIN B R,NAM Y J,OH D Y,et al. Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochimica Acta,2014,146:395-402.
[41] SAKUMA M,SUZUKI K,HIRAYAMA M,et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics,2016,285:101-105.
[42] OGAWA M,KANDA R,YOSHIDA K,et al. High-capacity thin film lithium batteries with sulfide solid electrolytes[J]. Journal of Power Sources,2012,205:487-490.
[43] WOLFENSTINE J,ALLEN J L,READ J,et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature[J]. Journal of Materials Science,2013,48(17):5846-5851.
[44] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources,2015,300:24-28.
[45] HASEGAWA S,IMANISHI N,ZHANG T,et al. Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass-ceramics with water[J]. Journal of Power Sources,2009,189(1):371-377.
[46] KOTOBUKI M,HOSHINA K,KANAMURA K. Electrochemical properties of thin TiO2 electrode on Li1 + xAlxGe2 − x( PO4)3 solid electrolyte[J]. Solid State Ionics,2011,198(1):22-25.
[47] LIANG Z,LIN D,ZHAO J,et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences,2016,113(11):2862-2867.
[48] LIN D,LIU Y,LIANG Z,et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat. Nano,2016,11(7):626-632.
[49] KOTOBUKI M,HOSHINA K,KANAMURA K. Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte[J]. Solid State Ionics,2011,198(1):22-25.
[50] ITO S,NAKAKITA M,AIHARA Y,et al. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent[J]. Journal of Power Sources,2014,271:342-345.
[51] MINAMI K,MIZUNO F,HAYASHI A,et al. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics,2007,178(11/12):837-841.
[52] MINAMI K,HAYASHI A,TATSUMISAGO M. Crystallization process for superionic Li7P3S11 glass-ceramic electrolytes[J]. Journal of the American Ceramic Society,2011,94(6):1779-1783.
[53] MIZUNO F,HAYASHI A,TADANAGA K,et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials,2005,17(7):918-921.
[54] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition,2007,46(41):7778-7781.
[55] KOTOBUKI M,KANAMURA K,SATO Y,et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. Journal of Power Sources,2011,196(18):7750-7754.
[56] BUSCHMANN H,BERENDTS S,MOGWITZ B,et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure[J]. Journal of Power Sources,2012,206:236-244.
[57] WOLFENSTINE J,RANGASAMY E,ALLEN J L,et al. High conductivity of dense tetragonal Li7La3Zr2O12[J]. Journal of Power Sources,2012,208:193-196.
[58] KOTOBUKI M,KOISHI M. Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. Ceramics International,2015,41(7):8562-8567.
[59] KOTOBUKI M,KOISHI M,KATO Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics,2013,19(12):1945-1948.
[60] XU X,WEN Z,YANG X,et al. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique[J]. Materials Research Bulletin,2008,43(8/9):2334-2341.
[61] XU X,WEN Z,WU X,et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O(x=0.0—0.20) with good electrical and electrochemical properties[J]. Journal of the American Ceramic Society,2007,90(9):2802-2806.
[62] ZHU Y,ZHANG Y,LU L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic[J]. Journal of Power Sources,2015,290:123-129.