[1] 侯远志, 焦黎帆. 国内外智慧城市建设研究综述[J]. 产业与科技论坛, 2014, 24: 94-97.
HOU Yuanzhi, JIAO Lifan. Overview of national and international smart city[J]. Industrial & Science Tribune, 2014, 24: 94-97.
[2] 国家电网公司“电网新技术前景研究”项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8.
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems. An analysis of prospects for application of large-scale energy storage technology in power system[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8.
[3] 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14-18.
YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of lager-scalr wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18.
[4] 罗星, 王吉红, 马钊. 储能技术综述及其在智能电网中的应用展望[J]. 智能网, 2014, 2(1): 7-12.
LUO Xing, WANG Jihong, MA Zhao. Overview of energy storage technologies and their application prospects in smart grid[J]. Smart Grid, 2014, 2(1): 7-12.
[5] 周林, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152.
ZHOU Lin, HUANG Yong, GUO Ke, et al. A survey of energy storage technology for micro grid[J]. Power System Protection and Control, 2011, 39(7): 147-152.
[6] CNESA. White paper on energy storage industry research 2016[R]. Beijing: Zhongguancun Energy Storage Industry Technology Alliance, 2016.
[7] ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246.
[8] ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[9] LIN H P, CHUA D, SALOMON M, et al. Low-temperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2001, 4(6): A71-A73.
[10] ZHANG S S, XU K, JOW T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156(2): 629-633.
[11] ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(8): 1636-1640.
[12] LÓPEZ C M, VAUGHEY J T, DEES D W. Morphological transitions on lithium metal anodes[J]. Journal of the Electrochemical Society, 2009, 156(9): A726-A729.
[13] LÓPEZ C M, VAUGHEY J T, DEES D W. Insights into the role of interphasial morphology on the electrochemical performance of lithium electrodes[J]. Journal of the Electrochemical Society, 2012, 159(6): A873-A886.
[14] 倪江锋, 周恒辉, 陈继涛, 等. 锂离子电池中固体电解质界面膜 (SEI)研究进展[J]. 化学进展, 2004, 16(3): 335-342.
NI Jiangfeng, ZHOU Henghui, CHEN Jitao, et al. Progress in solid electrolyte interface in lithium ion batteries[J]. Progress in Chemistry, 2004, 16(3): 335-342.
[15] YAMAKI J, SHINJO Y, DOI T, et al. The rate equation of decomposition for electrolytes with LiPF6 in Li-ion cells at elevated temperatures[J]. Journal of the Electrochemical Society, 2015, 162(4): A520-A530.
[16] 张昕岳, 周园, 邓小宇, 等. 锂离子电池LiBF4基液体电解质研究进展[J]. 化学通报, 2007(12): 929-935.
ZHANG Xiyue, ZHOU Yuan, DENG Xiaoyu, et al. Progress in LiBF4-based liquid electrolytes for Li-ion batteries[J]. Chemistry Bulletin, 2007(12): 929-935.
[17] XU K, ZHANG S S, LEE U, et al. LiBOB: Is it an alternative salt for lithium ion chemistry?[J]. Journal of Power Sources, 2005, 146(1): 79-85.
[18] ZHANG S S, XU K, JOW T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range[J]. Journal of Power Sources, 2006, 159(1): 702-707.
[19] AURBACH D, NAYAK P, GRINBLAT J, et al. Effect of lithium bis(oxalate) borate(LiBOB) as an additive in electrolyte for enhanced cycling stability of Li-rich Li1.2Ni0.16Mn0.56Co0.08O2 cathodes[C] //Meeting Abstracts. The Electrochemical Society, 2015(1): 71.
[20] XU K, ZHANG S, JOW T R. Electrolyte formulations for wide temperature lithium ion batteries: US 20100129721[P]. 2014.
[21] LI S, LI X, LIU J, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907.
[22] 石家华, 孙逊, 杨春和, 等.离子液体研究进展[J].化学学报, 2002(4): 243-250.
SHI Jiahua, SUN Xun, YANG Chunhe, et al.Progress of Ionic Liqiud[J]. Chemistry Bulletin, 2002(4): 243-250.
[23] GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580.
[24] UE M, TAKEDA M, TORIUMI A, et al. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors[J]. Journal of the Electrochemical Society, 2003, 150(4): A499-A502.
[25] KÜHNEL R S, BÖCKENFELD N, PASSERINI S, et al. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries[J]. Electrochimica Acta, 2011, 56(11): 4092-4099.
[26] LIAO X Z, MA Z F, GONG Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte[J]. Electrochemistry Communications, 2008, 10(5): 691-694.
[27] ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Letters, 2013, 13(8): 3824-3830.
[28] GU M, GENC A, BELHAROUAK I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries[J]. Chemistry of Materials, 2013, 25(11): 2319-2326.
[29] ITO A, SHODA K, SATO Y, et al. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge[J]. Journal of Power Sources, 2011, 196(10): 4785-4790.
[30] HERREYRE S, HUCHET O, BARUSSEAU S, et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97: 576-580.
[31] DING M S. Liquid-solid phase diagrams of ternary and quaternary organic carbonates[J]. Journal of the Electrochemical Society, 2004, 151(5): A731-A738.
[32] 肖利芬, 艾新平, 杨汉西, 等. 锂离子电池用低温电解质溶液研究[J]. 电池, 2004, 34(1): 10-12.
XIAO Lifen, AI Xinping, YANG Hanxi, et al. Research on low temperature electrolyte for li-ion batteries[J]. Battery Bimonthly, 2004, 34(1): 10-12.
[33] SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 1999, 146(2): 486-492.
[34] SAZHIN S V, KHIMCHENKO M Y, TRITENICHENKO Y N, et al. Performance of Li-ion cells with new electrolytes conceived for low-temperature applications[J]. Journal of Power Sources, 2000, 87(1): 112-117.
[35] SHIAO H C A, CHUA D, LIN H, et al. Low temperature electrolytes for Li-ion PVDF cells[J]. Journal of Power Sources, 2000, 87(1): 167-173.
[36] WANG C, APPLEBY A J, LITTLE F E. Irreversible capacities of graphite anode for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2002, 519(1): 9-17.
[37] 王夏芬. 锂离子电池低温电解液的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
WANG X F. Research on low temperature electrolyte for Li-ion batteries[D]. Harbin: Harbin Institute of Technology , 2009.
[38] 任永欢. 锂离子电池低温/高电压电解液研究[D]. 北京: 北京理工大学, 2015.
REN Y H. Low temperature/high voltage electrolyte for lithium ion battery[D]. Beijing: Beijing Institute of Technology, 2015.
[39] WRODNIGG G H, WRODNIGG T M, BESENHARD J O, et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochemistry Communications, 1999, 1(3): 148-150.
[40] TAKEUCHI S, MIYAZAKI K, SAGANE F, et al. Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions[J]. Electrochimica Acta, 2011, 56(28): 10450-10453.
[41] XIANG H, MEI D, YAN P, et al. The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20687-20695.
[42] SASAKI Y, EBARA R, NANBU N, et al. Direct fluorination of γ-butyrolactone[J]. Journal of Fluorine Chemistry, 2001, 108(1): 117-120.
[43] SASAKI Y. Organic electrolytes of secondary lithium batteries[J]. Electrochemistry, 2008, 76(1): 2-15.
[44] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193.
[45] WRODNIGG G H, BESENHARD J O, WINTER M. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. Journal of Power Sources, 2001, 97: 592-594.
[46] 王洪伟, 杜春雨, 王常波. 锂离子电池的低温性能研究[J]. 电池, 2009(4): 208-210.
WANG Hongwei, DU Chunyu, WANG Changbo. Study of low temperature performance of Li-ion battery[J]. Battery Bimonthly, 2009(4): 208-210.
[47] WAGNER R, BROX S, KASNATSCHEEW J, et al. Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochemistry Communications, 2014, 40: 80-83.
[48] BHATTACHARYYA A J, DOLLÉ M, MAIER J. Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions[J]. Electrochemical and Solid-State Letters, 2004, 7(11): A432-A434.
[49] HAMENU L, LEE H S, LATIFATU M, et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics, 2016, 16(6): 611-617.
[50] WON J H, LEE H S, HAMENU L, et al. Improvement of low-temperature performance by adopting polydimethylsiloxane- g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 325-329.
[51] LI Y, FEDKIW P S. Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion[J]. Electrochimica Acta, 2007, 52(7): 2471-2477.
[52] PRASANTH R, SHUBHA N, HNG H H, et al. Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries[J]. European Polymer Journal, 2013, 49(2): 307-318.
[53] WANG X L, CAI Q, FAN L Z, et al. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries[J]. Electrochimica Acta, 2008, 53(27): 8001-8007.
[54] JEONG H S, HONG S C, LEE S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/ poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. Journal of Membrane Science, 2010, 364(1): 177-182.
[55] LI Y D, ZHAO S X, NAN C W, et al. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2011, 509(3): 957-960.
[56] LOUIS H, LEE Y G, KIM K M, et al. Suppression of aluminum corrosion in lithium bis(trifluoromethanesulfonyl) imide-based electrolytes by the addition of fumed silica[J]. Bulletin of the Korean Chemical Society, 2013, 34(6): 1795-1799.
[57] LIAO Y, RAO M, LI W, et al. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries[J]. Electrochimica Acta, 2009, 54(26): 6396-6402.
[58] LI Y, YERIAN J A, KHAN S A, et al. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries[J]. Journal of Power Sources, 2006, 161(2): 1288-1296.
|