[1] 李会峰, 庞静, 卢世刚. 锂离子电池滥用条件下的安全性研究[J]. 电源技术, 2013, 37(12): 2235-2238.
LI Huifeng, PANG Jing, LU Shigang. Study on safety performance of Li-ion power batteries under deviant use[J]. Chinese Journal of Power Sources, 2013, 37(12): 2235-2238.
[2] JIANG J, DAHN J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2, Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4, in LiPF6 and LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1): 39-43.
[3] JIANG J, DAHN J R. ARC studies of the reaction between LiFePO4 and LiPF6 or LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 69(7): 724-728.
[4] 李慧芳, 黄家剑, 李飞, 等. 锂离子电池在充放电过程中的产热研究[J]. 电源技术, 2015, 39(7): 1390-1394.
LI Huifang, HUANG Jiajian, LI Fei, et al. Study on heat production of lithium ion batteries during charge and discharge process[J]. Chinese Journal of Power Sources, 2015, 39(7): 1390-1394.
[5] Kim M, Park J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery[J]. Journal of Power Sources, 2012, 212: 22-27.
[6] Chen J J, Wang S Q, Dandan C, et al. Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode[J]. Journal of Membrane Science, 2014, 449: 169-175.
[7] Jeong H S, Choi E S, Lee S Y. Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/ high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture[J]. Journal of Membrane Science, 2012, 415/416(10): 513-519.
[8] Tyunina E Y, Chekunova M D, et al. Electrochemical properties of lithium hexafluoroarsenate in methyl acetate at various temperatures[J]. Journal of Molecular Liquids, 2013, 187(11): 332-336.
[9] Foropoulos J, Marteau D D. Synthesis, properties and reactions of bis[(trifluoromethyl)sulfonyl] imide, (CF3SO2)2NH[J]. Inorganic Chemistry, 1984, 23(23): 3720-3723.
[10] Eshetu G G, Grugeon S, Gachot G, et al. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta, 2013, 102: 133-141.
[11] Botte G G, White R E, Zhang Z M. Thermal stability of LiPF6-EC:EMC electrolyte for 1ithium ion batteries[J]. Journal of Power Sources, 2001(97/98): 570-575.
[12] Han H B. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632.
[13] Kise M, Yoshioka S, Hamand I. Development of PTC functional cathode for lithium rechargeable batteries[J]. Electrochemistry, 2004, 72(9): 641-646.
[14] Ramadass P, Bala H, Ralph W, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures[J]. Journal of Power Sources, 2002, 112(2): 606-613.
[15] Gang N, Bala H, Branko N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources, 2003, 117(1/2): 160-169.
[16] AURBACH D. Electrod-solution interactions in Li-ion batteries: A short summary and new insights[J]. Journal of Power Sources, 2003 (119/120/121): 497-512.
[17] Vetter J, Novák P, Wagner M R. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1): 269-281.
[18] Sarre G, Blanchard P, Broussely M. Aging of lithium-ion batteries[J]. Journal of Power Sources, 2004, 127(1): 65-71. |