储能科学与技术 ›› 2016, Vol. 5 ›› Issue (4): 562-567.doi: 10.12028/j.issn.2095-4239.2016.04.024

• 研究及进展 • 上一篇    下一篇

LiFePO4锂离子电池放电行为理论研究

苏 宪 彬   

  1. 南京南瑞太阳能科技有限公司,江苏 南京 211106
  • 收稿日期:2016-02-03 修回日期:2016-02-26 出版日期:2016-07-01 发布日期:2016-07-01
  • 通讯作者: 苏宪彬,男,硕士,研究方向为锂电池储能,E-mail:115041256@qq.com。
  • 作者简介:苏宪彬,男,硕士,研究方向为锂电池储能,E-mail:115041256@qq.com。

Theoretical study on discharge behavior of LiFePO4 battery

SU Xianbin   

  1. Nanjing Nari Solar Technology Co., Ltd., Nanjing 211106, Jiangsu, China
  • Received:2016-02-03 Revised:2016-02-26 Online:2016-07-01 Published:2016-07-01

摘要: 使用多孔电极理论对LiFePO4(LFP)锂离子电池的放电行为进行了详细探讨,发现随着放电过程进行,电极内部的电化学反应从隔膜侧向集流体侧移动,并且移动过去之后LFP基本完成放电过程,放电截止时电化学反应截止在电极的某个位置,并不是所有的LFP颗粒都完成了放电。随后对放电速率、电极电导率和电解液扩散系数对放电过程的影响进行了研究。随着放电倍率增加,电化学反应推进的距离不断减少,并且峰值不断增大,峰值区域变窄。提高电极电导率可以保证电化学反应从隔膜侧开始进行,但是继续提高电极电导率并不能进一步将电化学反应的峰值向电极深处推进。较高的扩散系数可以保证所有的活性材料都能发生电化学反应。以上结论可对高性能LFP锂离子电池的设计和制备提供了有效的指导作用。

关键词: 锂电池, LFP, 放电

Abstract:

Using a porous electrode theory of LiFePO4 (LFP) lithium battery discharge behavior were discussed in detail and found with the discharge process and internal electrode electrochemical reaction from diaphragm lateral set side fluid move, and move past LFP basic completion of discharge process, electric cut-off electrochemical reaction stop in a certain position of the electrode, and not all of the LFP particles are completing the discharge. The effects of discharge rate, electrode conductivity and electrolyte diffusion coefficient on the discharge process were studied. With the increase of discharge rate, the distance of the electrochemical reaction is decreased, and the peak value increases, and the peak area becomes narrow. The increase of the polar plate conductivity can ensure that the electrochemical reaction is carried out from the side of the diaphragm, but the increase of the electrode conductivity cannot be further improved by the peak value of the electrochemical reaction to the depth of the electrode. The higher diffusion coefficient can ensure that all the active materials can react with electrochemical reactions. The above conclusions can provide an effective guide for the design and preparation of high performance LFP lithium batteries.

Key words: lithium battery, LFP, discharge