[1] 钱江锋. 先进储钠电极材料及其电化学储能应用[D]. 武汉:武汉大学, 2012. QIAN Jiangfeng. Advanced Na-storage materials and their electrochemical energy storage applications[D]. Wuhan:Wuhan University, 2012.
[2] CARMICHAEL R S. Physical properties of rocks and minerals[M]. Boca Raton:CRC press, 1989.
[3] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11):3431-3448.
[4] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23):11636-11682.
[5] 张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9):1739-1750. ZHANG Ning, LIU Yongchang, CHEN Chengcheng, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9):1739-1750.
[6] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica section A:Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5):751-767.
[7] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132.
[8] HUNT C P, MOSKOWITZ B M, BANERJEE S K. Physical properties of rocks and minerals[M]. Boca Raton:CRC Press, 1989.
[9] ZOU X, XIONG P, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39):26495-26506.
[10] JIAN Z, LUO W, JI X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569.
[11] XUE L, GAO H, ZHOU W, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries[J]. Advanced Materials, 2016, 28(43):9608-9612.
[12] KOMABA S, HASEGAWA T, DAHBI M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60:172-175.
[13] OKOSHI M, YAMADA Y, KOMABA S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents:a comparison with lithium, sodium, and magnesium ions[J]. Journal of the Electrochemical Society, 2017, 164(2):A54-A60.
[14] BARPANDA P, YE T, NISHIMURA S, et al. Sodium iron pyrophosphate:A novel 3.0V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24:116-119.
[15] LU Y, WANG L, CHENG J, et al. Prussian blue:A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52):6544-6546.
[16] YOU Y, WU X L, YIN Y X, et al. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5):1643-1647.
[17] YUE Y F, BINDER A J, GUO B K, et al. Mesoporous prussian blue analogues:Template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie, 2014, 126(12):3198-3201.
[18] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7):2658-2664.
[19] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12):5421-5425.
[20] PADIGI P, THIEBES J, SWAN M, et al. Prussian green:a high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166:32-39.
[21] EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1):221-228.
[22] XUE L, LI Y, GAO H, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6):2164-2167.
[23] WU X, JIAN Z, LI Z, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77:54-57.
[24] HE G, NAZAR L F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5):1122-1127.
[25] LI X, CHENG F, GUO B, et al. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries[J]. the Journal of Physical Chemistry B, 2005, 109(29):14017-14024.
[26] MYUNG S T, KUMAGAI N, KOMABA S, et al. Effects of Al doping on the microstructure of LiCoO2 cathode materials[J]. Solid State Ionics, 2001, 139(1):47-56.
[27] PENG Z S, WAN C R, JIANG C Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials[J]. Journal of Power Sources, 1998, 72(2):215-220.
[28] BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2:a high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(49):17243-17248.
[29] SU D, WANG C, AHN H, et al. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance[J]. Chemistry-A European Journal, 2013, 19(33):10884-10889.
[30] KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11):6211-6220.
[31] FOUASSIER C, DELMAS C, HAGENMULLER P, Evolution structurale et proprietes physiques des phases AXMO2 (A=Na, K; M=Cr, Mn, Co)(x ≤ 1)[J]. Materials Research Bulletin, 1975, 10(6):443-449.
[32] HIRONAKA Y, KUBOTA K, KOMABA S. P2-and P3-KxCoO2 as an electrochemical potassium intercalation host[J]. Chemical Communications, 2017, 53(26):3693-3696.
[33] KIM H, KIM J C, BO S H, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201700098.
[34] VAALMA C, GIFFIN G A, BUCHHOLZ D, et al. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black[J]. Journal of the Electrochemical Society, 2016, 163(7):A1295-A1299.
[35] LIU C, LUO S, HUANG H, et al. K0.67Ni0.17Co0.17Mn0.66O2:A cathode material for potassium-ion battery[J]. Electrochemistry Communications, 2017, 82:150-154.
[36] WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Letters, 2016, 17(1):544-550.
[37] MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8):6552-6591.
[38] BO S H, WANG F, JANSSEN Y, et al. Degradation and (de) lithiation processes in the high capacity battery material LiFeBO3[J]. Journal of Materials Chemistry, 2012, 22(18):8799-8809.
[39] REYNAUD M, ATI M, MELOT B C, et al. Li2Fe(SO4)2 as a 3.83V positive electrode material[J]. Electrochemistry communications, 2012, 21:77-80.
[40] JIAN Z, ZHAO L, PAN H, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications, 2012, 14(1):86-89.
[41] ZHU C, SONG K, VAN AKEN P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix:An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4):2175-2180.
[42] HAN J, LI G N, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11):1805-1808.
[43] CHIHARA K, KATOGI A, KUBOTA K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemical Communications, 2017, 53(37):5208-5211.
[44] RECHAM N, ROUSSE G, SOUGRATI M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22):4363-4370.
[45] XING Z, JIAN Z, LUO W, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2:63-68.
[46] CHEN Y, LUO W, CARTER M, et al. Organic electrode for non-aqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211.
[47] JIAN Z, LIANG Y, RODRÍGUEZ-PÉREZ I A, et al. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8.
[48] GE P, FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28:1172-1175.
[49] DRESSELHAUS M S, DRESSELHAUS G. Intercalation compounds of graphite[J]. Advances in Physics, 1981, 30(2):139-326.
[50] ZHAO J, ZOU X, ZHU Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44):8103-8110.
[51] ZHANG W, JIANG X, WANG X, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals[J]. Angewandte Chemie International Edition, 2017, 129(29):8435.
[52] ZHAO X, XIONG P, MENG J, et al. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(36):19237-19244.
[53] SHARE K, COHN A P, CARTER R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano, 2016, 10(10):9738-9744.
[54] GONG S, WANG Q. Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability[J]. the Journal of Physical Chemistry C, 2017, 121(44):24418-24424.
[55] JU Z, ZHANG S, XING Z, et al. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J]. ACS Applied Materials & Interfaces, 2016, 8(32):20682-20690.
[56] MA G, HUANG K, MA J S, et al. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17):7854-7861.
[57] ADAMS R A, SYU J M, ZHAO Y, et al. Binder-free N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017. 9(21):17872-17881.
[58] JIAN Z, XING Z, BOMMIER C, et al. Hard carbon microspheres:potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3):doi:10.1002/aenm-201501874.
[59] WEN Y, HE K, ZHU Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5:4033.
[60] BOMMIER C, JI X. Recent development on anodes for Na-ion batteries[J]. Israel Journal of Chemistry, 2015, 55(5):486-507.
[61] HAN J, XU M, NIU Y, et al. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries[J]. Chemical Communications, 2016, 52(75):11274-11276.
[62] KISHORE B, VENKATESH G, MUNICHANDRAIAH N. K2Ti4O9:A promising anode material for potassium ion batteries[J]. Journal of The Electrochemical Society, 2016, 163(13):A2551-A2554.
[63] HAN J, NIU Y, BAO S, et al. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(78):11661-11664.
[64] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6(14):11173-11179.
[65] LIAN P, DONG Y, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40:1-8.
[66] NAGUIB M, ADAMS R A, ZHAO Y, et al. Electrochemical performance of mxenes as K-ion battery anodes[J]. Chemical Communications, 2017, 53(51) 6883.
[67] SANGSTER J, PELTON A D. The K-Sb (potassium-antimony) system[J]. Journal of Phase Equilibria, 1993, 14(4):510-514.
[68] SONGSTER J, PELTON A D. The Na-Sb (sodium-antimony) system[J]. Journal of Phase Equilibria, 1993, 14(2):250-255.
[69] MCCULLOCH W D, REN X, YU M, et al. Potassium-ion oxygen battery based on a high capacity antimony anode[J]. ACS Applied Materials & Interfaces, 2015, 7(47):26158-26166.
[70] SULTANA I, RAMIREDDY T, RAHMAN M M, et al. Tin-based composite anodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(59):9279-9282.
[71] WANG Q, ZHAO X, NI C, et al. Reaction and capacity fading mechanisms of tin nanoparticles in potassium-ion batteries[J]. the Journal of Physical Chemistry C, 2017,121(23):12652-12657.
[72] ZHANG W, MAO J, LI S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. Journal of the American Chemical Society, 2017, 139(9):3316-3319.
[73] SANGSTER J M. KP (potassium-phosphorus) system[J]. Journal of Phase Equilibria and Diffusion, 2010, 31(1):68-72.
[74] SULTANA I, RAHMAN M M, RAMIREDDY T, et al. High capacity potassium-ion battery anodes based on black phosphorus[J]. Journal of Materials Chemistry A, 2017, 5(45):23506-23512.
[75] HU Z, ZHOU C, RAMANUJAM P R, et al. Rapid reversible electromigration of intercalated K ions within individual MoO3 nanobundle[J]. Journal of Applied Physics, 2013, 113(2):024311.
[76] SULTANA I, RAHMAN M M, MATETI S, et al. K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process[J]. Nanoscale, 2017, 9(10):3646-3654.
[77] REN X, ZHAO Q, MCCULLOCH W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4):1313-1321.
[78] LAKSHMI V, CHEN Y, MIKHAYLOV A A, et al. Nanocrystalline SnS2 coated onto reduced graphene oxide:Demonstrating feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries[J]. Chemical Communications, 2017, 53(59):8272.
[79] DENG Q, PEI J, FAN C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries[J]. Nano Energy, 2017, 33:350-355.
[80] LEI K, LI F, MU C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & Environmental Science, 2017, 10(2):552-557.
[81] BIE X, KUBOTA K, HOSAKA T, et al. A novel K-ion battery:Hexacyanoferrate (Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9):4325-4330. |