1 |
陈晓轩, 李晟, 胡泳钢, 等 . 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016.
|
|
CHEN Xiaoxuan , LI Sheng , HU Yonggang , et al . Failure mechanism of Li1+ x (NCM)1- x O2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016.
|
2 |
ARIZA M J , JONES D J , ROZIÈRE J , et al . Probing the local structure and the role of protons in lithium sorption processes of a new lithium-rich manganese oxide[J]. Chemistry of Materials, 2006, 18(7): 1885-1890.
|
3 |
SONG C , FENG W , SHI Z , et al . Effect of drying temperature on properties of lithium-rich manganese-based materials in sol-gel method[J]. Ionics, 2019: 1-8.
|
4 |
KIM T , SONG B , LUNT A J G , et al . Operando X-ray absorption spectroscopy study of atomic phase reversibility with wavelet transform in the lithium-rich manganese based oxide cathode[J]. Chemistry of Materials, 2016, 28(12): 4191-4203.
|
5 |
ZHANG Z , LIU C , FENG C , et al . Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution[J]. Nano Letters, 2019, 19(12): 8774-8779.
|
6 |
OHZUKU T , UEDA A , NAGAYAMA M , et al . Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochimica Acta, 1993, 38(9): 1159-1167.
|
7 |
OKUBO M , HOSONO E , KIM J , et al . Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
|
8 |
THACKERAY M M , JOHNSON P J , DE PICCIOTTO L A , et al . Electrochemical extraction of lithium from LiMn2O4 [J]. Materials Research Bulletin, 1984, 19(2): 179-187.
|
9 |
LEE H W, MURALIDHARAN P , RUFFO R , et al . Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters, 2010, 10(10): 3852-3856.
|
10 |
HUANG W , WANG G , LUO C , et al . Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103936.
|
11 |
DAIGLE J C , BARRAY F , GAGNON C , et al . Amphiphilic latex as a water-based binder for LiFePO4 cathode[J]. Journal of Power Sources, 2019, 415: 172-178.
|
12 |
HUANG H , YIN S C , NAZAR L F . Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): A170-A172.
|
13 |
XIE H M , WANG R S , YING J R , et al . Optimized LiFePO4-polyacene cathode material for lithium-ion batteries[J]. Advanced Materials, 2006, 18(19): 2609-2613.
|
14 |
DENG Z Q , MANTHIRAM A . Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes[J]. The Journal of Physical Chemistry C, 2011, 115(14): 7097-7103.
|
15 |
ZHENG F , YANG C , XIONG X , et al . Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angewandte Chemie International Edition, 2015, 54(44): 13058-13062.
|
16 |
YANG X , WANG D , YU R , et al . Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition[J]. Journal of Materials Chemistry A, 2014, 2(11): 3899-3911.
|
17 |
ZHANG S , GU H , PAN H , et al . A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(6): doi: 10.1002/aenm.201601066.
|
18 |
ZOU W , XIA F J , SONG J P , et al . Probing and suppressing voltage fade of Li-rich Li1. 2Ni0. 13Co0. 13Mn0. 54O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2019, doi: 10.1016/j.electacta.2019.06.119 .
doi: 10.1016/j.electacta.2019.06.119
|
19 |
MARTHA S K , NANDA J , VEITH G M , et al . Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0. 1O2 [J]. Journal of Power Sources, 2012, 199: 220-226.
|
20 |
GENT W E , LIM K, LIANG Y , et al . Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8(1):doi: 10.1038/s41467-017-02041-x .
|
21 |
AVAN BOMMEL , DAHN J R . Kinetics study of the high potential range of lithium-rich transition-metal oxides for lithium-ion batteries by electrochemical methods[J]. Electrochemical and Solid-State Letters, 2010, 13(5): A62-A64.
|
22 |
XU M , CHEN Z , LI L , et al . Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide[J]. Journal of Power Sources, 2015, 281: 444-454.
|
23 |
YU R , WANG G , LIU M , et al . Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping[J]. Journal of Power Sources, 2016, 335: 65-75.
|
24 |
OH P, OH S M, LI W , et al . High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell[J]. Advanced Science, 2016, 3(11): doi: 10.1002/advs.201600184.
|
25 |
BETTGE M , LI Y , GALLAGHER K , et al . Voltage fade of layered oxides: Its measurement and impact on energy density[J]. Journal of the Electrochemical Society, 2013, 160(11): A2046-A2055.
|
26 |
HU E Y , YU X Q , LIN R Q , et al . Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698.
|
27 |
BLOOM I , TRAHEY L , ABOUIMRANE A , et al . Effect of interface modifications on voltage fade in 0.5Li2MnO3 ·0.5LiMn0.375Ni0.375Co0.25O2 cathode materials[J]. Journal of Power Sources, 2014, 249: 509-514.
|
28 |
ZHENG F , YANG C , XIONG X , et al . Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angew Chem. Int. Ed. Engl., 2015, 54 (44): 13058-13062.
|
29 |
GU M , BELHAROUAK I , ZHENG J M , et al . Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7 (1): 760-767.
|
30 |
ITO A, SHODA K , SATO Y , et al . Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge[J]. Journal of Power Sources, 2011, 196 (10): 4785-4790.
|
31 |
SATHIYA M , ABAKUMOV A M , FOIX D , et al . Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nat. Mater., 2015, 14 (2): 230-238.
|
32 |
PAULSEN J M , THOMAS C L , DAHN J R . Layered Li-Mn-oxide with the O2 structure: A cathode material for Li-ion cells which does not convert to spinel[J]. Journal of the Electrochemical Society, 1999, 146 (10): 3560-3565.
|
33 |
ZUO Y , LI B , JIANG N , et al . A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16): doi: 10.1002/adma.201707255.
|
34 |
GUO S , LIU P , YU H , et al . A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(20): 5894-5899.
|
35 |
YABUUCHI N , HARA R , KAJIYAMA M , et al . New O2/P2-type li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries[J]. Advanced Energy Materials, 2014, 4(13): 13072-13072.
|
36 |
ZHANG X H , PANG W L , WAN F , et al . P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: Enhanced properties and mechanism via graphene connection[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20650-20659.
|
37 |
DUFFORT V , TALAIE E , BLACK R , et al . Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions[J]. Chemistry of Materials, 2015, 27(7): 2515-2524.
|
38 |
QING R , SHI J , XIAO D , et al . Cathode materials: Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Adv. Energy Mater.,2016, 6(6): 1501914-1501922.
|
39 |
DING Z , FENG Y , JI R , et al . Improving the electrochemical cyclability of lithium manganese orthosilicate through the pillaring effects of gradient Na substitution[J]. Journal of Power Sources, 2017, 349: 18-26.
|
40 |
ZHAI N S , LI M W , WANG W L , et al . The application of the eIS in Li-ion batteries measurement[J]. Journal of Physics: Conference Series, 2006, 48: 1157-1161.
|