储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1113-1126.doi: 10.19799/j.cnki.2095-4239.2020.0028
收稿日期:
2020-01-07
修回日期:
2020-02-13
出版日期:
2020-07-05
发布日期:
2020-06-30
通讯作者:
胡仁宗
E-mail:1164372732@qq.com;msrenzonghu@scut.edu.cn
作者简介:
许辉勇(1975—),男,博士研究生,主要研究方向为锂离子电池热失控扩展及防控研究,E-mail:基金资助:
XU"Huiyong1,2(), FAN"Yafei2, ZHANG"Zhiping2, HU"Renzong1()
Received:
2020-01-07
Revised:
2020-02-13
Online:
2020-07-05
Published:
2020-06-30
Contact:
Renzong HU
E-mail:1164372732@qq.com;msrenzonghu@scut.edu.cn
摘要:
动力电池热失控是电池的一种不可逆失效现象,严重时电池燃烧爆炸会导致电动车辆燃烧,造成财产损失甚至严重的人身伤害。研究动力电池热失控对掌握电池失效规律和特性,优化电池设计,提升电池品质,降低电池热失控风险意义重大。在车辆实际运行中,机械滥用是触发动力电池热失控的重要原因之一。其中,针刺方法和挤压方法是动力电池热失控机械触发因素的典型研究方法。该文综述了针刺和挤压方法触发动力电池热失控的研究进展,并按照温度的动态变化,将电池热失控过程划分为4个阶段,接着结合电池正负极材料、隔膜、电解液、电池结构设计等方面,系统分析了针刺方式和挤压方式触发动力电池热失控的多项影响因素。相关研究结果表明,针刺和挤压方法的选择、电池荷电状态、电池内部结构设计和电池化学体系均对动力电池热失控结果有很大的影响。其中,电池内部结构设计和电池化学体系的选择是影响电池热安全性能的本质因素,机械等滥用方式导致电池产生大规模的内短路是触发热失控最直接的原因。最后,该文归纳分析了相关研究结果,对未来动力电池热失控研究方法和方向进行了展望,并对电池安全设计提出了合理化建议。
中图分类号:
许辉勇, 范亚飞, 张志萍, 胡仁宗. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126.
XU Huiyong, FAN Yafei, ZHANG Zhiping, HU Renzong. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126.
1 | DUBARRY M , TRUCHOT C , DEVIE A , et al .Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications IV.Over-discharge phenomena[J].Journal of the Electrochemical Society,2015,162(9):A1787-A1792. |
2 | KSHETRIMAYUM K S , YOON Y G , GYE H R, et al . Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system[J]. Applied Thermal Engineering, 2019: 113797. |
3 | BöRNER M , FRIESEN A , GRÜTZKE M , et al . Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. |
4 | PANCHAL S , DINCER I , AGELIN-CHAAB M , et al . Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190-199. |
5 | FRIESEN A , HILDEBRAND S , HORSTHEMKE F , et al . Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior[J]. Journal of Power Sources, 2017, 363: 70-77. |
6 | YANG X , GAO Y , GE S , et al . Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3: 1-18. |
7 | SANTHANAGOPALAN S , RAMADASS P , ZHANG J . Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
8 | MOHAMMED A H , ESMAEELI R , ALINIAGERDROUDBARI H , et al . Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019, 160: doi: 10.1016/j.applthermaleng.2019.114106. |
9 | OUYANG D , CHEN M , LIU J , WANG J . Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132: 65-75. |
10 | 田君, 田崔钧, 王一拓, 等 . 锂离子电池安全性测试与评价方法分析[J]. 储能科学与技术, 2018, 7: 1128-1134. |
TIAN Jun , TIAN Cuijun , WANG Yituo , et al .Analysisof safety test and evaluation methods for lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7: 1128-1134. | |
11 | 罗庆凯, 王志荣, 刘婧婧, 等 . 18650型锂离子电池热失控影响因素[J]. 电源技术, 2016, 40: 277-280. |
LUO Qingkai , WANG Zhirong , LIU Jingjing , et al .Factors influencing thermal runaway of 18650 lithium ion battery [J]. Chinese Journal of Power Sources, 2016, 40: 277-280. | |
12 | Society of Automotive Engineers . Electric and hybrid electric vehicle rechargeable energy storage system (ress) safety and abuse testing—rules for bibliographic references and citations to information resources: SAE J2464—2009[S]. America: Society of Automotive Engineers, 2009. |
13 | The International Electrotechnical Commission . Safety requirements Secondary lithium-ion cells for the propulsion of electric road vehicles—rules for bibliographic references and citations to information resources: IEC 62660-3, 2010[S]. Geneva: The International Electrotechnical Commission, 2010. |
14 | Economic Commission for Europe, Inland transport committee, World Forum for the Harmonization of Vehicle Regulations . Proposal for a new UN GTR on electric vehicle safety—rules for bibliographic references and citations to information resources: EVS-UN GTR, 2017[S]. Geneva: Inland transport committee, 2017. |
15 | The British Standards Institution . Secondary lithium cells and batteries for use in industrial applications—rules for bibliographic references and citations to information resources: IEC 62660-4, 2012[S]. Geneva: BSI Standards Limited, 2019. |
16 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 电动汽车用动力蓄电池安全要求及实验方法 参考文献著录规则: GB/T 31485, 2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Safety requirements and test methods for power batteries used in electric vehicles—rules for bibliographic references and citations to information resources: GB/T 31485, 2015[S]. Beijing: Standards Press of China, 2015. | |
17 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 电动汽车用锂离子动力蓄电池包和系统 第3部分: 安全性要求与测试方法 参考文献著录规则: GB/T 31467.3, 2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Lithium ion battery packs and systems for electric vehicles - part 3: Safety requirements and test methods references and citations to information resources: GB/T 31467, 2015[S]. Beijing: Standards Press of China, 2015. | |
18 | ABAZA A , FERRARI S , WONG H K , et al . Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells[J]. Journal of Energy Storage, 2018, 16: 211-217. |
19 | FENG X , OUYANG M , Li J , HE X . A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. |
20 | FENG X , OUYANG M , Li J , et al . Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
21 | FENG X , He X , OUYANG M , et al . Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNi x Co y Mn z O2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
22 | HOU P , ZHANG H , DENG X , et al . Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29643-29653. |
23 | DUAN J , WU C , CAO Y , et al . Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating[J]. Electrochimica Acta, 2016, 221: 14-22. |
24 | 陈鹏, 任宁, 姬学敏, 等 . 负极材料对 LiNi0.5Mn1.5O4电池电化学性能的影响[J]. 新能源进展, 2017, 5(4): 259-265. |
CHEN Peng , REN Ning , JI Xuemin , et al . Effect of cathode materials on electrochemical performance of LiNi0.5Mn1.5O4 [J].Adances in New and Renewable Energy, 2017, 5(4): 259-265. | |
25 | 张明杰, 杨凯, 段舒宁, 等 . 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228. |
ZHANG Mingjie , YANG Kai , DUAN Shuning , et al . Thermal stability of high energy density lithium nickel-cobalt aluminate/lithium titanate battery system[J]. High Voltage Engineering, 2017, 43(7): 2221-2228. | |
26 | MALEKI H , HOWARD J N . Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574. |
27 | DAGGER T , MEIER V , HILDEBRAND S , et al . Safety performance of 5 A·h lithium ion battery cells containing the flame retardant electrolyte additive (phenoxy) pentafluorocyclotriphosphazene[J]. Energy Technology, 2018, 6(10): 2001-2010. |
28 | 高桂红, 张红梅, 姚兰浩 . 安全型电解液对锂离子电池性能的影响[J]. 电池, 2016 (2): 20. |
GAO Guihong , ZHANG Hongmei , YAO Lanhao . Influence of safe electrolyte on lithium ion battery performance[J]. Battery Bimonthly, 2016 (2): 20. | |
29 | JIANG L , WANG Q , SUN J . Electrochemical performance and thermal stability analysis of LiNi x Co y Mn z O2 cathode based on a composite safety electrolyte[J]. Journal of Hazardous Materials, 2018, 351: 260-269. |
30 | XU H , SHI J , HU G , et al . Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries[J]. Journal of Power Sources, 2018, 391: 113-119. |
31 | YAN X , ZHANG L , LU J . Improve safety of high energy density LiNi1/3Co1/3Mn1/3O2 /graphite battery using organosilicon electrolyte[J]. Electrochimica Acta, 2019, 296: 149-154. |
32 | ICHIMURA M . The safety characteristics of lithium-ion batteries for mobile phones and the nail penetration test[C] //INTELEC 07-29th International Telecommunications Energy Conference. IEEE, 2007: 687-692. |
33 | 刘仕强, 王芳, 樊彬, 等 .针刺速度对动力锂离子电池安全性的影响[J]. 汽车安全与节能学报, 2013 (4): 82-86. |
LIU Shiqiang , WANG Fang , FAN Bin , et al . Effect of acupuncture speed on the safety of power lithium ion battery[J]. Journal of Automotive Safety and Energy, 2013 (4): 82-86. | |
34 | FINEGAN D P , TJADEN B , HEENAN T M M , et al . Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13): A3285-A3291. |
35 | MAO B , CHEN H , CUI Z , et al . Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. |
36 | YOKOSHIMA T , MUKOYAMA D , MAEDA F , et al . Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. |
37 | WANG Y W , JIANG J M , CHUNG Y H , et al . Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2891-2901. |
38 | XU J , LAN C , QIAO Y , et al . Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890. |
39 | BAI F , CHEN M , SONG W , et al . Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167: 561-574. |
40 | United States advanced battery consortium electrochemical storage system abuse test procedure manual[R]. the United States Advanced Battery Consortium, 1999. |
41 | Standard for lithium batteries[S]. Underwriter Laboratories Inc., 2012: 1-22. |
42 | ZHANG X , SAHRAEIahraei E , WANG K . Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701. |
43 | KISTERS T , SAHRAEI E , WIERZBICKI T . Dynamic impact tests on lithium-ion cells[J]. International Journal of Impact Engineering, 2017, 108: 205-216. |
44 | 兰凤崇, 郑文杰, 李志杰, 等 . 车用动力电池的挤压载荷变形响应及内部短路失效分析[J]. 华南理工大学学报, 2018, 46(6): 65-72. |
LAN Fengchong , ZHENG Wenjie , LI Zhijie , et al . Extrusion load deformation response and internal short-circuit failure analysis of vehicle power batteries [J]. Journal of South China University of Technology, 2018, 46(6): 65-72. | |
45 | WANG H , KUMAR A , SIMUNOVIC S , et al . Progressive mechanical indentation of large-format Li-ion cells[J]. Journal of Power Sources, 2017, 341: 156-164. |
46 | 许万, 周大永 . 三元锂离子动力电池挤压损伤容限的试验研究[J]. 汽车安全与节能学报, 2019, 10(1): 106-111. |
XU Wan , ZHOU Dayong . Experimental study on extrusion damage tolerance of ternary lithium ion power battery [J]. Journal of Automotive Safety and Energy, 2019, 10(1): 106-111. | |
47 | SAHRAEI E , BOSCO E , DIXON B , et al . Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios[J]. Journal of Power Sources, 2016, 319: 56-65. |
48 | ZHU J , WIERZBICKI T , LI W . A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. |
49 | ALI M Y, LAI W J , PAN J . Computational models for simulation of a lithium-ion battery module specimen under punch indentation[J]. Journal of Power Sources, 2015, 273: 448-459. |
50 | AVDEEV I , GILAKI M . Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact[J]. Journal of Power Sources, 2014, 271: 382-391. |
51 | REN F , COX T, WANG H . Thermal runaway risk evaluation of Li-ion cells using a pinch-torsion test[J]. Journal of power sources, 2014, 249: 156-162. |
52 | ALI M Y, LAI W J , PAN J . Computational models for simulations of lithium-ion battery cells under constrained compression tests[J]. Journal of Power Sources, 2013, 242: 325-340. |
53 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 电动汽车用动力蓄电池安全要求: GB/T 38031, 2020[S]. 北京: 中国标准出版社, 2020. |
General Administration of Quality Supervision, Inspection and Quarantineof the People's Republic of China . Electric vehicles traction battery safetyrequirements: GB/T 38031, 2020 [S]. Beijing: Standards Press of China,2020. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||