储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 603-616.doi: 10.19799/j.cnki.2095-4239.2020.0079

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2019.12.1—2020.01.31)

张华, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2020-02-20 出版日期:2020-03-05 发布日期:2020-03-15
  • 通讯作者: 黄学杰 E-mail:xjhuang@iphy.ac.cn
  • 作者简介:张华(1993—),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:zhanghua15@mails.ucas.ac.cn;
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100)

Reviews of 100 selected recent papers on lithium batteries(Dec 1, 2019 to Jan 31, 2020)

ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, JIN Zhou, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-02-20 Online:2020-03-05 Published:2020-03-15
  • Contact: Xuejie HUANG E-mail:xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2019年12月1日至2020年1月31日上线的锂电池研究论文,共有3412篇,选择其中100篇加以评论。正极材料主要研究了层状氧化物,特别是高镍三元(乃至全镍)的衰减机理和如何通过表界面修饰加以改善,富锂和高电压钴酸锂也有一部分。负极材料研究侧重于金属锂负极和硅负极,其中金属锂负极可通过制备界面膜,电解液添加剂,或者修饰集流体促进锂离子均匀沉积,减少枝晶;硅基负极则聚焦于制备复合材料来抑制体积膨胀和提高电子电导,进而提升库仑效率和循环稳定性。固态电解质研究涵盖了无机陶瓷和有机凝胶,两者的复合也是热点,液态电解质则重点研究新型添加剂或者锂盐添加效果。固态、锂硫和锂空等新技术还处在萌芽阶段,研究人员致力于寻找合适的电池形态和制备方法,保持电极的电子、离子传输性能以及反应可逆性。在测量和表征技术上,多种原位技术可以获取电极内部的形貌、锂元素分布,电位分布等信息在充放电过程中的动态变化,从而为机理研究和性能提升提供依据。理论模拟工作侧重于界面SEI形成机理分析,此外还有一些介观和宏观尺度的理论模型被提出,来理解实际使用中的力学和热力学问题。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recently published papers on lithium batteries. The 100 papers were selected among 3412 online publications in the Web of Science archive from Dec. 1 of 2019 to Jan. 31 of 2020. The failure mechanisms and effects of surface modifications on layered oxides, especially Ni-rich (or even Ni-only) cathode materials, are being extensively investigated. Li-rich and high voltage LiCoO2-layered cathode materials are also studied, although less frequently than layered oxides. Among the anode materials, Si-based composites are thought to improve the cycling performance and columbic efficiency by inhibiting the volume expansion without losing their electron conductivity. Meanwhile, the cycling properties of metallic lithium anodes have been improved by applying various surface-covering layers, electrolyte additives, and current collector modifications. Solid state electrolytes (both inorganic and organic) and their compositions are intensively researched, and new additives and lithium salts have been proposed as liquid electrolytes. Solid state Li-S and Li-O2 batteries remain in the early stage of development, but new electrode preparation methods that maintain the conducting network and reaction reversibility have been proposed. The dynamic changes in morphology, lithium, and potential distribution have been observed by various in situ technologies. The mechanism of SEI has been theoretically analyzed, and the mechanical and thermal properties of solid-state batteries have been explored in mesoscopic and macroscopic models.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: